论文标题
生物医学图像分析的生成对抗网络中培训挑战的调查
A Survey on Training Challenges in Generative Adversarial Networks for Biomedical Image Analysis
论文作者
论文摘要
在生物医学图像分析中,深度学习方法的适用性直接受到可用图像数据数量的影响。这是由于深度学习模型需要大型图像数据集提供高级性能。生成对抗网络(GAN)已被广泛用于通过生成合成生物医学图像来解决数据限制。 gan由两个模型组成。发电机,一种模型,该模型学习如何根据收到的反馈产生合成图像。鉴别器,该模型将图像分类为合成或真实,并为发电机提供反馈。在整个培训过程中,gan可以遇到几种技术挑战,这些挑战阻碍了合适的合成图像的产生。首先,模式崩溃问题,从而产生相同的图像或从不同的输入特征产生统一的图像。其次,梯度下降优化器无法达到NASH均衡的非连接问题。第三,由于歧视者达到了最佳分类性能,因此没有提供任何有意义的反馈,因此消失的梯度问题出现了不稳定的训练行为。这些问题导致产生模糊,不现实且不多样化的合成图像。迄今为止,还没有在生物医学图像领域的背景下概述这些技术挑战的影响。这项工作基于解决生物医学成像领域中gan的培训问题的解决方案提供了审查和分类。这项调查强调了重要的挑战,并概述了有关生物医学图像领域gan训练的未来研究指示。
In biomedical image analysis, the applicability of deep learning methods is directly impacted by the quantity of image data available. This is due to deep learning models requiring large image datasets to provide high-level performance. Generative Adversarial Networks (GANs) have been widely utilized to address data limitations through the generation of synthetic biomedical images. GANs consist of two models. The generator, a model that learns how to produce synthetic images based on the feedback it receives. The discriminator, a model that classifies an image as synthetic or real and provides feedback to the generator. Throughout the training process, a GAN can experience several technical challenges that impede the generation of suitable synthetic imagery. First, the mode collapse problem whereby the generator either produces an identical image or produces a uniform image from distinct input features. Second, the non-convergence problem whereby the gradient descent optimizer fails to reach a Nash equilibrium. Thirdly, the vanishing gradient problem whereby unstable training behavior occurs due to the discriminator achieving optimal classification performance resulting in no meaningful feedback being provided to the generator. These problems result in the production of synthetic imagery that is blurry, unrealistic, and less diverse. To date, there has been no survey article outlining the impact of these technical challenges in the context of the biomedical imagery domain. This work presents a review and taxonomy based on solutions to the training problems of GANs in the biomedical imaging domain. This survey highlights important challenges and outlines future research directions about the training of GANs in the domain of biomedical imagery.