论文标题
微小,始终在且脆弱的地方:通过设计选择在设备机学习工作流程中的偏见传播
Tiny, always-on and fragile: Bias propagation through design choices in on-device machine learning workflows
论文作者
论文摘要
数十亿个分布式,异质和资源限制的物联网设备为私人,快速和离线推断个人数据部署了设备机器学习(ML)。设备上的ML高度依赖于上下文,并且对用户,用法,硬件和环境属性敏感。这种敏感性和对ML偏见的倾向使研究在设备环境中的偏见很重要。我们的研究是对该新兴领域中偏见的首次研究之一,并为建立更公平的智障ML奠定了重要的基础。我们应用软件工程镜头,通过设备ML工作流中的设计选择来调查偏见的传播。我们首先将可靠性偏见确定为不公平的来源,并提出量化它的措施。然后,我们对关键字发现任务进行经验实验,以显示复杂和交互的技术设计选择如何放大和传播可靠性偏差。我们的结果证明了在模型培训期间做出的设计选择,例如样本率和输入特征类型,以及为优化模型而做出的选择,例如轻质体系结构,修剪学习率和修剪稀疏性,可能会导致男性和女性群体之间的预测性差异。根据我们的发现,我们建议工程师减轻偏见的努力策略,以减轻设备ML的偏见。
Billions of distributed, heterogeneous and resource constrained IoT devices deploy on-device machine learning (ML) for private, fast and offline inference on personal data. On-device ML is highly context dependent, and sensitive to user, usage, hardware and environment attributes. This sensitivity and the propensity towards bias in ML makes it important to study bias in on-device settings. Our study is one of the first investigations of bias in this emerging domain, and lays important foundations for building fairer on-device ML. We apply a software engineering lens, investigating the propagation of bias through design choices in on-device ML workflows. We first identify reliability bias as a source of unfairness and propose a measure to quantify it. We then conduct empirical experiments for a keyword spotting task to show how complex and interacting technical design choices amplify and propagate reliability bias. Our results validate that design choices made during model training, like the sample rate and input feature type, and choices made to optimize models, like light-weight architectures, the pruning learning rate and pruning sparsity, can result in disparate predictive performance across male and female groups. Based on our findings we suggest low effort strategies for engineers to mitigate bias in on-device ML.