论文标题
非热的su-schrieffer-heeger模型的非线性动力学
Non-linear dynamics of the non-Hermitian Su-Schrieffer-Heeger model
论文作者
论文摘要
我们在数值上确定了旋转振荡器阵列中激光边缘模式的鲁棒性,该振荡器阵列实现了非热su-Schrieffer-Heeger模型。先前的研究发现,线性化的动力学可以进入拓扑结构,在该拓扑状态中,边缘模式被驱动到自动扫描中,而散装动力学则被抑制。在这里,我们研究了完整的非线性和有限温度动力学,其理解对于基于旋转振荡器的应用至关重要。我们的分析表明,在广泛的参数和温度下,非线性域中的激光边缘模式动力学持续存在。我们研究了与实验实现相关的扰动的影响,并讨论哪些可能对激光边缘模式的稳定性有害。最后,我们将模型映射到光子模型。我们的分析有可能阐明具有非线性性的多种非甲米系统的动力学。
We numerically determine the robustness of the lasing edge modes in a spin-torque oscillator array that realizes the non-Hermitian Su-Schrieffer-Heeger model. Previous studies found that the linearized dynamics can enter a topological regime in which the edge mode is driven into auto-oscillation, while the bulk dynamics are suppressed. Here we investigate the full non-linear and finite-temperature dynamics, whose understanding is essential for spin-torque oscillators-based applications. Our analysis shows that the lasing edge mode dynamics persist in the non-linear domain for a broad range of parameters and temperatures. We investigate the effects of perturbations relevant to experimental implementations and discuss which ones might be detrimental to the stability of the lasing edge mode. Finally, we map our model onto a photonic model. Our analysis has the potential to shed light onto the dynamics of a plethora of non-Hermitian systems with non-linearities.