论文标题
Deepalloc:共享频谱系统中有效频谱分配的基于CNN的方法
DeepAlloc: CNN-Based Approach to Efficient Spectrum Allocation in Shared Spectrum Systems
论文作者
论文摘要
共享的频谱系统促进了频谱分配给无执照的用户而不会损害许可用户;他们在优化频谱公用事业方面提供了巨大的希望,但是他们的管理(尤其是向无牌用户分配的频谱分配)很具有挑战性。当前分配方法的一个重大缺点是,它们要么非常保守以确保正确性,要么基于不完美的传播模型和/或频谱传感,空间粒度差。这导致频谱利用率较差,这是共享频谱系统的基本目标。 为了在一般情况下,在接近二级用户接近频谱中,我们从根本上需要了解信号路径函数。但是,实际上,即使是最著名的路径模型也具有不令人满意的精度,并且进行广泛的调查以收集路径损失值是不可行的。为了应对这一挑战,我们建议使用监督的学习技术直接学习频谱分配功能。当可能没有主要用户的信息时,我们特别解决了方案;对于此类设置,我们利用众包的传感体系结构,并将频谱传感器读数作为功能。我们开发了一种有效的基于CNN的方法(称为DeepAlloc),并解决了其在学习频谱分配函数中应用的各种挑战。通过广泛的大规模模拟和一个小测试床,我们证明了我们发达的技术的有效性。特别是,我们观察到我们的方法将标准学习技术的准确性提高了60%。
Shared spectrum systems facilitate spectrum allocation to unlicensed users without harming the licensed users; they offer great promise in optimizing spectrum utility, but their management (in particular, efficient spectrum allocation to unlicensed users) is challenging. A significant shortcoming of current allocation methods is that they are either done very conservatively to ensure correctness, or are based on imperfect propagation models and/or spectrum sensing with poor spatial granularity. This leads to poor spectrum utilization, the fundamental objective of shared spectrum systems. To allocate spectrum near-optimally to secondary users in general scenarios, we fundamentally need to have knowledge of the signal path-loss function. In practice, however, even the best known path-loss models have unsatisfactory accuracy, and conducting extensive surveys to gather path-loss values is infeasible. To circumvent this challenge, we propose to learn the spectrum allocation function directly using supervised learning techniques. We particularly address the scenarios when the primary users' information may not be available; for such settings, we make use of a crowdsourced sensing architecture and use the spectrum sensor readings as features. We develop an efficient CNN-based approach (called DeepAlloc) and address various challenges that arise in its application to the learning the spectrum allocation function. Via extensive large-scale simulation and a small testbed, we demonstrate the effectiveness of our developed techniques; in particular, we observe that our approach improves the accuracy of standard learning techniques and prior work by up to 60%.