论文标题
构造和双统一量子电路的登山性能
Construction and the ergodicity properties of dual unitary quantum circuits
论文作者
论文摘要
我们考虑砖砌类型的一个维量子电路,其中基本量子门是双统一的。这样的模型是可以解决的:可以精确计算无限温度集合的动态相关函数。我们回顾了双重统一大门的各种现有构造,并在许多情况下为他们补充了新想法。我们讨论了与物理和数学方面的各种主题的联系,包括量子信息理论,用于ADS/CFT对应的张量网络(全息误差校正代码),经典组合设计(正交拉丁正方形),平面代数代数和Yang-Baxter Maps。之后,我们考虑了特殊类别统一模型的特殊类别的刻度性特性,其中本地门是置换矩阵。我们发现出乎意料的现象:即使在单位相关函数完全混沌(完全热化)的情况下,非恋行为也可以在多站点相关性中表现出来。我们还讨论了由完美张量构建的电路。它们在本地出现是最混乱,最混乱的电路,尽管如此,它们仍可以显示出全球非效率的迹象:如果完美的张量是由有限场上的线性图构造的,那么所得的电路可以在出乎意料的短时间内显示出精确的量子复兴。 Roland Bacher和Denis Serre在附录中介绍了此类模型中复发时间的简短数学处理。
We consider one dimensional quantum circuits of the brickwork type, where the fundamental quantum gate is dual unitary. Such models are solvable: the dynamical correlation functions of the infinite temperature ensemble can be computed exactly. We review various existing constructions for dual unitary gates and we supplement them with new ideas in a number of cases. We discuss connections with various topics in physics and mathematics, including quantum information theory, tensor networks for the AdS/CFT correspondence (holographic error correcting codes), classical combinatorial designs (orthogonal Latin squares), planar algebras, and Yang-Baxter maps. Afterwards we consider the ergodicity properties of a special class of dual unitary models, where the local gate is a permutation matrix. We find an unexpected phenomenon: non-ergodic behaviour can manifest itself in multi-site correlations, even in those cases when the one-site correlation functions are fully chaotic (completely thermalizing). We also discuss the circuits built out of perfect tensors. They appear locally as the most chaotic and most scrambling circuits, nevertheless they can show global signs of non-ergodicity: if the perfect tensor is constructed from a linear map over finite fields, then the resulting circuit can show exact quantum revivals at unexpectedly short times. A brief mathematical treatment of the recurrence time in such models is presented in the Appendix by Roland Bacher and Denis Serre.