论文标题
葡萄干调查的宇宙学结果:使用近红外的IA型超新星作为测量状态的暗能量方程的新途径
Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State
论文作者
论文摘要
在近红外(NIR)测量时,IA型超新星(SNE IA)比在光学上测量时更精确。通过这种动机,从2012年至2017年,我们使用哈勃太空望远镜(HST)开始了葡萄干计划,以获取37 sn ia的宇宙学距离样本($ 0.2 \ lyssim Z \ Lessim Z \ Lessim 0.6 $ 0.6 $),由Pan-Starrs和Dark-Sarts和Dark Energy调查发现。通过将Carnegie Supernova项目在NIR中观察到的$ z <0.1 $的42个SN IA进行比较,我们构建了一个来自NIR观测值的哈勃图(仅具有最大光线和从光学数据中的一些选择削减时间),以追求独特的Avenue来限制状态参数的黑暗能量方程。我们分析了整个Hubble残差对SN IA主机Galaxy质量的依赖性,并根据方法和Step位置,找到尺寸$ \ sim $ 0.06-0.1〜MAG的HUBBLE残差步骤,$ \ sim $ 0.06-0.1〜MAG,其显着性。将我们的NIR样本与CMB约束相结合,我们发现$ 1+W = -0.17 \ pm0.12 $(Stat $+$ syst)。最大的系统误差是依赖红移的SN选择偏见和NIR质量步骤的特性。我们还使用这些数据来测量$ h_0 = 75.9 \ pm 2.2 $ km s $^{ - 1} $ mpc $^{ - 1} $来自星星的$中的几何距离校准,在Nir vers $ h_0 = 71.2 = 71.2 \ pm3.8 $ km s $ s $^$^$^$^$^$^$^$^$^ - 1} $^ - 1} $^ - 1} $^ - 1} $^ - 1} $^ - 1} $^ - 1}梯子接近普朗克。使用光学数据,我们发现$ 1+W = -0.10 \ PM0.09 $,并且将光学和NIR数据合并在一起,我们发现$ 1+W = -0.06 \ PM0.07 $;这些最高0.11英寸$ W $的变化可能表明光学与NIR SN型号的不一致。通过较大的低$ z $样品,新的轻曲线模型,校准改进以及通过从罗马太空望远镜中构建高$ z $样品,将有很多机会改善这种NIR测量结果,并更好地了解系统的不确定性。
Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012-2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SN Ia ($0.2 \lesssim z \lesssim 0.6$) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher-$z$ HST data with 42 SN Ia at $z<0.1$ observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical data) to pursue a unique avenue to constrain the dark energy equation of state parameter, $w$. We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size $\sim$0.06-0.1~mag with 1.5- to 2.5-$σ$ significance depending on the method and step location. Combining our NIR sample with CMB constraints, we find $1+w=-0.17\pm0.12$ (stat$+$syst). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measure $H_0=75.9\pm 2.2$ km s$^{-1}$ Mpc$^{-1}$ from stars with geometric distance calibration in the hosts of 8 SNe Ia observed in the NIR versus $H_0=71.2\pm3.8$ km s$^{-1}$ Mpc$^{-1}$ using an inverse distance ladder approach tied to Planck. Using optical data we find $1+w=-0.10\pm0.09$ and with optical and NIR data combined, we find $1+w=-0.06\pm0.07$; these shifts of up to 0.11 in $w$ could point to inconsistency in optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low-$z$ samples, new light-curve models, calibration improvements, and by building high-$z$ samples from the Roman Space Telescope.