论文标题
量子系统遵守普遍不确定性原理的量子限制:TSALLIS恒温器的新范式
Decoherence limit of quantum systems obeying generalized uncertainty principle: new paradigm for Tsallis thermostatistics
论文作者
论文摘要
广义不确定性原理(GUP)是一个现象学模型,其目的是在量子系统中说明最小的长度量表(例如,有效量子描述中的普朗克量表或特征性逆质量量表)。在这封信中,我们研究了GUP系统在其腐蚀域中可能的观察效应。我们首先得出了与GUP相关的相干状态,并揭示了它们在动量表示中与Tsallis的概率幅度相吻合,其非扩展性参数$ Q $单调与GUP变形参数$β$单调增加。其次,对于$β<0 $(即$ q <1 $),我们表明,由于Bekner-Babenko不平等,GUP完全等同于基于Tsallis-entroprogy-Power的信息理论不确定性关系。最后,我们调用了从估计理论中知道的最大熵原理,以揭示与tsallis的GUP相关量子理论的准经典(脱谐)极限之间的联系。这可能会在从量子理论到模拟引力的一系列领域中提供令人兴奋的范式。例如,在某些量子重力理论中,例如共形性重力,上述准经典制度具有相关的观察后果。我们讨论一些含义。
The generalized uncertainty principle (GUP) is a phenomenological model whose purpose is to account for a minimal length scale (e.g., Planck scale or characteristic inverse-mass scale in effective quantum description) in quantum systems. In this Letter, we study possible observational effects of GUP systems in their decoherence domain. We first derive coherent states associated to GUP and unveil that in the momentum representation they coincide with Tsallis' probability amplitudes, whose non-extensivity parameter $q$ monotonically increases with the GUP deformation parameter $β$. Secondly, for $β< 0$ (i.e., $q < 1$), we show that, due to Bekner-Babenko inequality, the GUP is fully equivalent to information-theoretic uncertainty relations based on Tsallis-entropy-power. Finally, we invoke the Maximal Entropy principle known from estimation theory to reveal connection between the quasi-classical (decoherence) limit of GUP-related quantum theory and non-extensive thermostatistics of Tsallis. This might provide an exciting paradigm in a range of fields from quantum theory to analog gravity. For instance, in some quantum gravity theories, such as conformal gravity, aforementioned quasi-classical regime has relevant observational consequences. We discuss some of the implications.