论文标题

PRMI:用于多种植物根研究的Minirhizotron图像的数据集

PRMI: A Dataset of Minirhizotron Images for Diverse Plant Root Study

论文作者

Xu, Weihuang, Yu, Guohao, Cui, Yiming, Gloaguen, Romain, Zare, Alina, Bonnette, Jason, Reyes-Cabrera, Joel, Rajurkar, Ashish, Rowland, Diane, Matamala, Roser, Jastrow, Julie D., Juenger, Thomas E., Fritschi, Felix B.

论文摘要

了解植物的根系体系结构(RSA)对于包括可持续性和气候适应在内的各种植物科学问题领域至关重要。 MinirHizotron(MR)技术是通过随着时间的推移捕获根部成像来非破坏RSA的广泛使用的方法。从MR图像中的土壤中精确细分根是研究RSA特征的关键步骤。在本文中,我们介绍了MR Technology捕获的大规模数据集的植物根图像。总共有六个不同物种的72K RGB根图像,包括棉花,木瓜,花生,芝麻,向日葵和数据集中的开关草。这些图像涵盖了各种条件,包括各种根部年龄,根结构,土壤类型和土壤表面深度。所有图像都用弱图像级标签注释,以指示每个图像是否包含根。图像级标签可用于支持植物根部分割任务中弱监督的学习。此外,已经手动注释了63K图像以生成像素级二进制掩码,以指示每个像素是否对应于root。这些像素级二进制面具可以用作语义分割任务中监督学习的基础真理。通过引入该数据集,我们旨在通过深度学习和其他图像分析算法来促进根部自动分割和RSA的研究。

Understanding a plant's root system architecture (RSA) is crucial for a variety of plant science problem domains including sustainability and climate adaptation. Minirhizotron (MR) technology is a widely-used approach for phenotyping RSA non-destructively by capturing root imagery over time. Precisely segmenting roots from the soil in MR imagery is a critical step in studying RSA features. In this paper, we introduce a large-scale dataset of plant root images captured by MR technology. In total, there are over 72K RGB root images across six different species including cotton, papaya, peanut, sesame, sunflower, and switchgrass in the dataset. The images span a variety of conditions including varied root age, root structures, soil types, and depths under the soil surface. All of the images have been annotated with weak image-level labels indicating whether each image contains roots or not. The image-level labels can be used to support weakly supervised learning in plant root segmentation tasks. In addition, 63K images have been manually annotated to generate pixel-level binary masks indicating whether each pixel corresponds to root or not. These pixel-level binary masks can be used as ground truth for supervised learning in semantic segmentation tasks. By introducing this dataset, we aim to facilitate the automatic segmentation of roots and the research of RSA with deep learning and other image analysis algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源