论文标题
基于深度元学习的多城市场景的基于细粒的轨迹旅行时间估计
Fine-Grained Trajectory-based Travel Time Estimation for Multi-city Scenarios Based on Deep Meta-Learning
论文作者
论文摘要
在智能运输系统(ITS)中,旅行时间估计(TTE)是必不可少的。对于多城市场景,实现基于细粒轨迹的旅行时间估计(TTTE)是很重要的,即,对于多个城市场景,可以准确估计给定轨迹的旅行时间。但是,由于复杂的因素,包括动态的时间依赖性和细粒度的空间依赖性,它面临着巨大的挑战。为了应对这些挑战,我们提出了一个基于元学习的框架Metatte,通过利用精心设计的DED的深层神经网络模型来不断地提供准确的旅行时间估计,该模型由数据预处理模块和编码器decoder-decoder模块组成。通过引入元学习技术,使用少量示例增强了元素的概括能力,这为在未来的交通状况和道路网络随着时间的推移随时间而变化时,开辟了新的机会,以增加在TTTE上达到一致性的潜力。 DED模型采用编码器 - 模型网络来捕获细粒的空间和时间表示。进行了两个现实世界数据集的广泛实验,以确认我们的Metatte的表现优于六个最先进的基线,并且比成都和Porto数据集的最佳基线提高了29.35%和25.93%的准确性。
Travel Time Estimation (TTE) is indispensable in intelligent transportation system (ITS). It is significant to achieve the fine-grained Trajectory-based Travel Time Estimation (TTTE) for multi-city scenarios, namely to accurately estimate travel time of the given trajectory for multiple city scenarios. However, it faces great challenges due to complex factors including dynamic temporal dependencies and fine-grained spatial dependencies. To tackle these challenges, we propose a meta learning based framework, MetaTTE, to continuously provide accurate travel time estimation over time by leveraging well-designed deep neural network model called DED, which consists of Data preprocessing module and Encoder-Decoder network module. By introducing meta learning techniques, the generalization ability of MetaTTE is enhanced using small amount of examples, which opens up new opportunities to increase the potential of achieving consistent performance on TTTE when traffic conditions and road networks change over time in the future. The DED model adopts an encoder-decoder network to capture fine-grained spatial and temporal representations. Extensive experiments on two real-world datasets are conducted to confirm that our MetaTTE outperforms six state-of-art baselines, and improve 29.35% and 25.93% accuracy than the best baseline on Chengdu and Porto datasets, respectively.