论文标题
Dirac Fermions的无反射Klein隧道:比较dirac方程的分裂操作员和交错的离散化
Reflectionless Klein tunneling of Dirac fermions: Comparison of split-operator and staggered-lattice discretization of the Dirac equation
论文作者
论文摘要
由于旋转摩托明锁定和旋转保护的结合,电场中的无质量迪拉克费米斯沿田间线沿田间线繁殖而不会反向散射。如果迪拉克方程在空间和时间内离散,由于在布里渊区的多个狄拉克锥之间散射,这种现象被称为“ klein隧道”,可能会丢失。为了避免这种情况,文献中已经开发了一个交错的时空晶格离散化,在原始正方形晶格的Brillouin区域中有一个Dirac锥。在这里,我们表明,惊人的尺寸使布里鲁因区域的大小加倍,实际上包含两个狄拉克锥。我们发现,这种速度加倍引起了克莱因隧道的虚假崩溃,可以通过基于拆分操作员方法的替代单单键式离散方案来避免这种隧道。
Massless Dirac fermions in an electric field propagate along the field lines without backscattering, due to the combination of spin-momentum locking and spin conservation. This phenomenon, known as "Klein tunneling", may be lost if the Dirac equation is discretized in space and time, because of scattering between multiple Dirac cones in the Brillouin zone. To avoid this, a staggered space-time lattice discretization has been developed in the literature, with one single Dirac cone in the Brillouin zone of the original square lattice. Here we show that the staggering doubles the size of the Brillouin zone, which actually contains two Dirac cones. We find that this fermion doubling causes a spurious breakdown of Klein tunneling, which can be avoided by an alternative single-cone discretization scheme based on a split-operator approach.