论文标题
在偏见的选民过程中的入侵动态
Invasion Dynamics in the Biased Voter Process
论文作者
论文摘要
选民过程是一个经典的随机过程,它模拟了突变特质$ a $(例如,新的意见,信念,传奇,遗传突变,磁性旋转)的入侵(例如,人,基因,基因,粒子),它们共享居民特质$ b $,分布在图表上。代理商可以随时采用其一个邻居的特征,而入侵偏见$ r \ in(0,\ infty)$量化了对($ r> 1 $)的随机偏好或($ r> 1 $),而($ r <1 $)采用$ a $ a $ a $ a $ a $ a $ a $ by b $。成功是根据固定概率来衡量的,即最终所有代理商都采用了突变特质$ a $的概率。在本文中,我们研究了此模型下的固定概率最大化问题:鉴于预算$ K $,请找到一组$ k $的代理商来启动入侵,以最大程度地提高固定概率。我们表明,对于$ r> 1 $和$ r <1 $的问题是NP-HARD,而后一种情况在任何乘法因素中也不适合。从积极的一面来看,我们表明,当$ r> 1 $时,优化功能是suppular的,因此可以在$ 1-1/e $的因子内贪婪地近似。对一些提出的启发式方法的实验评估证实了我们的结果。
The voter process is a classic stochastic process that models the invasion of a mutant trait $A$ (e.g., a new opinion, belief, legend, genetic mutation, magnetic spin) in a population of agents (e.g., people, genes, particles) who share a resident trait $B$, spread over the nodes of a graph. An agent may adopt the trait of one of its neighbors at any time, while the invasion bias $r\in(0,\infty)$ quantifies the stochastic preference towards ($r>1$) or against ($r<1$) adopting $A$ over $B$. Success is measured in terms of the fixation probability, i.e., the probability that eventually all agents have adopted the mutant trait $A$. In this paper we study the problem of fixation probability maximization under this model: given a budget $k$, find a set of $k$ agents to initiate the invasion that maximizes the fixation probability. We show that the problem is NP-hard for both $r>1$ and $r<1$, while the latter case is also inapproximable within any multiplicative factor. On the positive side, we show that when $r>1$, the optimization function is submodular and thus can be greedily approximated within a factor $1-1/e$. An experimental evaluation of some proposed heuristics corroborates our results.