论文标题

财务时间序列的长期短期记忆神经网络

Long Short-Term Memory Neural Network for Financial Time Series

论文作者

Fjellström, Carmina

论文摘要

绩效预测是经济学和金融方面的一个古老问题。最近,机器学习和神经网络的发展引起了非线性时间序列模型,这些模型为传统分析方法提供了现代而有希望的替代方案。在本文中,我们介绍了一个独立和平行的长期记忆(LSTM)神经网络的合奏,以预测股票价格运动。由于LSTM的能力纳入了过去的信息,因此已显示LSTMS特别适合时间序列数据,而神经网络集合已被发现可以降低结果的可变性并改善概括。使用基于回报中位数的二进制分类问题,整体的预测取决于阈值值,这是同意结果所需的LSTM的最小数量。该模型应用于较小,效率较低的斯德哥尔摩OMX30的成分,而不是其他主要市场指数,例如文献中常见的DJIA和S&P500。通过直接的交易策略,与随机选择的投资组合和包含指数中所有股票的投资组合的比较表明,由LSTM Ensemble产生的投资组合随着时间的推移提供了更好的平均每日回报和更高的累计回报。此外,LSTM投资组合也表现出较小的波动性,从而导致较高的风险回收率。

Performance forecasting is an age-old problem in economics and finance. Recently, developments in machine learning and neural networks have given rise to non-linear time series models that provide modern and promising alternatives to traditional methods of analysis. In this paper, we present an ensemble of independent and parallel long short-term memory (LSTM) neural networks for the prediction of stock price movement. LSTMs have been shown to be especially suited for time series data due to their ability to incorporate past information, while neural network ensembles have been found to reduce variability in results and improve generalization. A binary classification problem based on the median of returns is used, and the ensemble's forecast depends on a threshold value, which is the minimum number of LSTMs required to agree upon the result. The model is applied to the constituents of the smaller, less efficient Stockholm OMX30 instead of other major market indices such as the DJIA and S&P500 commonly found in literature. With a straightforward trading strategy, comparisons with a randomly chosen portfolio and a portfolio containing all the stocks in the index show that the portfolio resulting from the LSTM ensemble provides better average daily returns and higher cumulative returns over time. Moreover, the LSTM portfolio also exhibits less volatility, leading to higher risk-return ratios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源