论文标题
小横截面稳定涡流环的存在,独特性和稳定性
Existence, uniqueness and stability of steady vortex rings of small cross-section
论文作者
论文摘要
本文与均匀密度的理想流体中的稳定涡旋环有关,这是三维不可压缩的Euler方程的特殊全局公理对称溶液。我们系统地建立了小横截面的稳定涡流环的存在,独特性和非线性轨道稳定性,在整个核心中,潜在的涡度是恒定的。后两个回答了自Fraenkel和Berger \ Cite {Bf1}(Acta Math。,1974)的开创性工作以来的一个长期存在的问题。为了实现我们的目标,我们通过其横截面半径来重新销售涡流环的Stokes流函数,并使用泰勒的公式在众所周知的兰金涡流上扩展它,在该公式中,系数的估计值是根据Green的功能和局部Pohozaev身份通过分解而获得的。主要观察结果是:流函数均匀,并且在$ z $方向上具有转化不变性;线性项在其扩展中的$ r $ - 发型的零点决定了涡流环的渐近位置,这似乎是消除Lyapunov-Schmidt减少存在的否定方向的条件;预见的零点的二阶$ r $ $ $ $ $ $ $ $ $ $ r $ $的不断变化条件被验证为唯一性的基本因素之一,而负性则意味着这些涡流圈将最大化由动能和脉冲组成的功能。通过应用Arnol'd的双重变异原理以及唯一性结果,我们最终能够证明薄涡流环的非线性轨道稳定性。该结果提供了拓扑托里支持的大量稳定涡流环,这与Choi \ cite {Choi20}讨论的Hill的球形涡流不同(COMM。PUREAPPL。MATH。,2023)。
This paper is concerned with steady vortex rings in an ideal fluid of uniform density, which are special global axi-symmetric solutions of the three-dimensional incompressible Euler equation. We systematically establish the existence, uniqueness and nonlinear orbital stability of steady vortex rings of small cross-section for which the potential vorticity is constant throughout the core. The latter two answer a long-standing question since the pioneering work of Fraenkel and Berger \cite{BF1} (Acta Math., 1974). To achieve our goal, we rescale the Stokes stream function of vortex ring by its cross-section radius, and expand it at the well-known Rankine vortex using Taylor's formula, where the estimates for coefficients are obtained by a decomposition according to Green's function and local Pohozaev identities. The main observations are: The stream function is even and has a translational invariance in $z$-direction; the zero point for the $r$-coefficient of linear term in its expansion determines the asymptotic location of vortex ring, which appears as the condition to eliminate the degenerate direction in Lyapunov-Schmidt reduction argument for existence; the non-vanishing condition of the second order $r$-coefficient at foresaid zero point is verified as one of the essential factors for uniqueness, while the negativity means that these vortex rings maximizes the functional composed of kinetic energy and impulse. By applying the Arnol'd's dual variational principle together with the uniqueness result, we are finally able to prove the nonlinear orbital stability of thin vortex rings. This result gives a large class of stable vortex rings supported on topological tori, which is different from Hill's spherical vortex discussed by Choi \cite{Choi20} (Comm. Pure Appl. Math., 2023).