论文标题

LAMDA:对话应用程序的语言模型

LaMDA: Language Models for Dialog Applications

论文作者

Thoppilan, Romal, De Freitas, Daniel, Hall, Jamie, Shazeer, Noam, Kulshreshtha, Apoorv, Cheng, Heng-Tze, Jin, Alicia, Bos, Taylor, Baker, Leslie, Du, Yu, Li, YaGuang, Lee, Hongrae, Zheng, Huaixiu Steven, Ghafouri, Amin, Menegali, Marcelo, Huang, Yanping, Krikun, Maxim, Lepikhin, Dmitry, Qin, James, Chen, Dehao, Xu, Yuanzhong, Chen, Zhifeng, Roberts, Adam, Bosma, Maarten, Zhao, Vincent, Zhou, Yanqi, Chang, Chung-Ching, Krivokon, Igor, Rusch, Will, Pickett, Marc, Srinivasan, Pranesh, Man, Laichee, Meier-Hellstern, Kathleen, Morris, Meredith Ringel, Doshi, Tulsee, Santos, Renelito Delos, Duke, Toju, Soraker, Johnny, Zevenbergen, Ben, Prabhakaran, Vinodkumar, Diaz, Mark, Hutchinson, Ben, Olson, Kristen, Molina, Alejandra, Hoffman-John, Erin, Lee, Josh, Aroyo, Lora, Rajakumar, Ravi, Butryna, Alena, Lamm, Matthew, Kuzmina, Viktoriya, Fenton, Joe, Cohen, Aaron, Bernstein, Rachel, Kurzweil, Ray, Aguera-Arcas, Blaise, Cui, Claire, Croak, Marian, Chi, Ed, Le, Quoc

论文摘要

我们提出LAMD​​A:对话应用程序的语言模型。 LAMDA是一个专门用于对话的基于变压器的神经语言模型的家族,该模型具有137B参​​数,并且已在1.56T公共对话数据和Web文本的单词上进行了预训练。虽然仅模型缩放可以提高质量,但在安全性和事实接地方面的改善较少。我们证明,通过带注释的数据进行微调并使模型能够咨询外部知识来源可以为安全和事实基础的两个主要挑战带来重大改进。第一个挑战,安全是确保模型的响应与一组人类价值观一致,例如防止有害建议和不公平的偏见。我们使用基于说明性人类价值的度量的度量来量化安全性,我们发现使用LAMDA分类器进行过滤候选响应,并用少量的人群认可的数据进行了微调,为提高模型安全提供了有希望的方法。第二个挑战,即事实基础,涉及使模型能够咨询外部知识源,例如信息检索系统,语言翻译器和计算器。我们使用接地度度量来量化事实,我们发现我们的方法使该模型能够产生基于已知来源的响应,而不是仅听起来合理的响应。最后,我们探讨了LAMDA在教育和内容建议领域中的使用,并分析它们的帮助和角色一致性。

We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformer-based neural language models specialized for dialog, which have up to 137B parameters and are pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can improve quality, it shows less improvements on safety and factual grounding. We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding. The first challenge, safety, involves ensuring that the model's responses are consistent with a set of human values, such as preventing harmful suggestions and unfair bias. We quantify safety using a metric based on an illustrative set of human values, and we find that filtering candidate responses using a LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising approach to improving model safety. The second challenge, factual grounding, involves enabling the model to consult external knowledge sources, such as an information retrieval system, a language translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our approach enables the model to generate responses grounded in known sources, rather than responses that merely sound plausible. Finally, we explore the use of LaMDA in the domains of education and content recommendations, and analyze their helpfulness and role consistency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源