论文标题

通过网络上的热流动动力学学习潜在的群体稀疏性

Learning with latent group sparsity via heat flow dynamics on networks

论文作者

Ghosh, Subhroshekhar, Mukherjee, Soumendu Sundar

论文摘要

机器学习问题中解释变量的组或群集结构是一种非常普遍的现象,它引起了从业者和理论家的广泛兴趣。在这项工作中,我们为在这种群体结构下的学习方法做出了一种学习的方法,该方法不需要先前有关小组身份的信息。我们的范式是由具有相关社区结构的基础网络的拉普拉斯(Laplacian)几何形状的动机,并通过将其直接纳入惩罚中进行进行,该惩罚是通过基于热流的本地网络动力学有效计算得出的。实际上,我们演示了一种基于可用数据构建此类网络的过程。值得注意的是,我们将涉及变量,频谱或其他方式的集体化的计算密集型预处理。我们的技术的基础是严格的定理,这些定理可以保证其有效的性能并为其样品复杂性提供界限。特别是,在广泛的设置中,可以在问题维度中进行对数的时间运行热流动动力学,这是足够的。我们详细探讨了我们方法与网络科学中关键统计物理模型的方法的接口,例如高斯自由场和随机块模型。我们通过成功应用程序来验证我们的方法,这些应用程序来自包括计算机科学,遗传学,气候学和经济学在内的各种应用领域的现实数据。我们的工作提高了将基于扩散的技术应用于经典学习任务的可能性,从而利用了数据依据的几何,动力学和随机结构之间的相互作用。

Group or cluster structure on explanatory variables in machine learning problems is a very general phenomenon, which has attracted broad interest from practitioners and theoreticians alike. In this work we contribute an approach to learning under such group structure, that does not require prior information on the group identities. Our paradigm is motivated by the Laplacian geometry of an underlying network with a related community structure, and proceeds by directly incorporating this into a penalty that is effectively computed via a heat flow-based local network dynamics. In fact, we demonstrate a procedure to construct such a network based on the available data. Notably, we dispense with computationally intensive pre-processing involving clustering of variables, spectral or otherwise. Our technique is underpinned by rigorous theorems that guarantee its effective performance and provide bounds on its sample complexity. In particular, in a wide range of settings, it provably suffices to run the heat flow dynamics for time that is only logarithmic in the problem dimensions. We explore in detail the interfaces of our approach with key statistical physics models in network science, such as the Gaussian Free Field and the Stochastic Block Model. We validate our approach by successful applications to real-world data from a wide array of application domains, including computer science, genetics, climatology and economics. Our work raises the possibility of applying similar diffusion-based techniques to classical learning tasks, exploiting the interplay between geometric, dynamical and stochastic structures underlying the data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源