论文标题

使用机器学习技术估算条件随机​​系数模型

Estimation of Conditional Random Coefficient Models using Machine Learning Techniques

论文作者

Martin, Stephan

论文摘要

在RCS和协变量的严格独立性下,在边际密度案例中大多考虑了非参数随机系数(RC)密度估计。本文介绍了使用机器学习技术在(大维)控制变量(大维)的控制变量上的有条件估计。条件RC密度允许在连续处理的部分效果中脱离可观察到的不可观察的异质性,从而增加了使用机器学习对异质效应估计的文献增加。 %它也可以使有条件的潜在结果分布提供信息。本文提出了一个两阶段的筛估程序。首先,得出条件RC密度的封闭形式的筛子近似,在每个筛子系数中可以表示为条件期望函数随控件而变化。其次,通过通用机器学习程序估算筛子系数,并在适当的样品分裂规则下进行估算。有条件的RC密度估计器的$ L_2 $ -Convergence速率被得出。该速率的速度比平均回归机器学习估计器的典型速率较慢,这是由于RC密度估计问题的不良性。使用随机森林算法在一系列蒙特卡洛模拟中使用随机森林算法以及来自SOEP-IS的真实数据来说明估计量的性能和适用性。这里研究了关于投资组合选择的经济实验中的行为异质性。该方法揭示了人群中两种类型的行为,一种符合经济理论,一种不符合经济理论。对类型的分配很大程度上是基于数据中没有的不可观察到的。

Nonparametric random coefficient (RC)-density estimation has mostly been considered in the marginal density case under strict independence of RCs and covariates. This paper deals with the estimation of RC-densities conditional on a (large-dimensional) set of control variables using machine learning techniques. The conditional RC-density allows to disentangle observable from unobservable heterogeneity in partial effects of continuous treatments adding to a growing literature on heterogeneous effect estimation using machine learning. %It is also informative of the conditional potential outcome distribution. This paper proposes a two-stage sieve estimation procedure. First a closed-form sieve approximation of the conditional RC density is derived where each sieve coefficient can be expressed as conditional expectation function varying with controls. Second, sieve coefficients are estimated with generic machine learning procedures and under appropriate sample splitting rules. The $L_2$-convergence rate of the conditional RC-density estimator is derived. The rate is slower by a factor then typical rates of mean regression machine learning estimators which is due to the ill-posedness of the RC density estimation problem. The performance and applicability of the estimator is illustrated using random forest algorithms over a range of Monte Carlo simulations and with real data from the SOEP-IS. Here behavioral heterogeneity in an economic experiment on portfolio choice is studied. The method reveals two types of behavior in the population, one type complying with economic theory and one not. The assignment to types appears largely based on unobservables not available in the data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源