论文标题
超速rydberg原子量子模拟器中的运动型谐波
Motional decoherence in ultracold Rydberg atom quantum simulators of spin models
论文作者
论文摘要
Ultracold Rydberg原子阵列是用于量子模拟和计算的新兴平台。但是,这些系统中的破坏性仍然没有完全理解。最近的实验[Guardado-Sanchez等。物理。 Rev. X 8,021069(2018)]观察到在光学晶格中用锂-6 rydberg原子实现的二维ISING模型的淬火和纵向扫描动力学的强烈反谐。这种破裂的猜想是由自旋运动耦合引起的。在这里,我们表明,自旋运动耦合确实会导致与实验数据的定性且经常定量的一致性,从而使用离散的截短的Wigner近似方法来处理困难的自旋运动耦合问题。我们还表明,在光学晶格和微框架阵列中的Rydberg原子的将来的实验中,这种破坏性将是一个重要因素,并讨论减轻运动效果的方法,例如使用较重的原子或更深的陷阱。
Ultracold Rydberg atom arrays are an emerging platform for quantum simulation and computing. However, decoherence in these systems remains incompletely understood. Recent experiments [Guardado-Sanchez et al. Phys. Rev. X 8, 021069 (2018)] observed strong decoherence in the quench and longitudinal-field-sweep dynamics of two-dimensional Ising models realized with Lithium-6 Rydberg atoms in optical lattices. This decoherence was conjectured to arise from spin-motion coupling. Here we show that spin-motion coupling indeed leads to decoherence in qualitative, and often quantitative, agreement with the experimental data, treating the difficult spin-motion coupled problem using the discrete truncated Wigner approximation method. We also show that this decoherence will be an important factor to account for in future experiments with Rydberg atoms in optical lattices and microtrap arrays, and discuss methods to mitigate the effect of motion, such as using heavier atoms or deeper traps.