论文标题
liouville type定理(f; f')p-harmonic在叶子上
Liouville type theorem for (F;F')p-harmonic maps on foliations
论文作者
论文摘要
在本文中,我们研究$(\ Mathcal f,\ Mathcal f')_ {p} $ - 叶中的riemannian歧管$(m,g,\ m raimancal f)$和$(m',g',g',\ mathcal f')$之间的谐波图。 a $(\ MATHCAL F,\ MATHCAL F')_ {p} $ - 谐波映射$ ϕ :( m,g,g,\ mathcal f)\ to(m',g',g',\ mathcal f')$是横向$ p $ p $ p $ - 增强功能的函数$ e_ e_ {b,p,p,p,p} $的关键点。琐事,$(\ MATHCAL F,\ MATHCAL F')_ 2 $ -HARMONIC地图为$(\ Mathcal f,\ Mathcal f')$ - 谐波映射,这是$ e_b $的关键点。在Foliated Riemannian歧管上,谐波图的另一个定义称为横向谐波映射,这是Euler-largrange方程$τ_b(ϕ)= 0 $的解决方案。两个定义不是等效的,但是如果$ \ MATHCAL F $很少,则两个定义是等效的。首先,我们为$(\ Mathcal f,\ Mathcal f')_ {p} $ - 谐波映射提供了第一个和第二个变量公式。接下来,我们研究了广义的weitzenböck类型公式和liouville type定理,以$(\ mathcal f,\ mathcal f')_ {p} $ - 谐波映射。
In this paper, we study $(\mathcal F,\mathcal F')_{p}$-harmonic maps between foliated Riemannian manifolds $(M,g,\mathcal F)$ and $(M',g',\mathcal F')$. A $(\mathcal F,\mathcal F')_{p}$-harmonic map $ϕ:(M,g,\mathcal F)\to (M', g',\mathcal F')$ is a critical point of the transversal $p$-energy functional $E_{B,p}$. Trivially, $(\mathcal F,\mathcal F')_2$-harmonic map is $(\mathcal F,\mathcal F')$-harmonic map, which is a critical point of $E_B$. There is another definition of a harmonic map on foliated Riemannian manifolds, called transversally harmonic map, which is a solution of the Euler-Largrange equation $τ_b(ϕ)=0$. Two definitions are not equivalent, but if $\mathcal F$ is minimal, then two definitons are equivalent. Firstly, we give the first and second variational formulas for $(\mathcal F,\mathcal F')_{p}$-harmonic maps. Next, we investigate the generalized Weitzenböck type formula and the Liouville type theorem for $(\mathcal F,\mathcal F')_{p}$-harmonic map.