论文标题

在过渡金属二甲化物的扭曲异质结构中的电气和热传输,CRI $ _3 $连接到超导体

Electrical and thermal transport in a twisted heterostructure of transition metal dichalcogenide and CrI$_3$ connected to a superconductor

论文作者

Majidi, Leyla, Asgari, Reza

论文摘要

过渡金属二核苷(TMDC)和碘化铬(CRI $ _3 $)异质结构之间的接近交换效应的广泛可调节性为在二维磁磁中使用TMDC提供了有趣的可能性。在这项工作中,使用Dirac -Bogoliubov -De Gennes方程研究了TMDC/CRI $ _3 $ enction在TMDC/CRI $ _3 $ enction中电气和热传输的影响。我们表明,由于自旋轨道相互作用引起的带状结构可以控制大量量,并且频带的交换分解是由接近效应产生的。 Andreev反射过程(AR)过程的性质高度依赖于自旋轨道耦合引起的自旋谷极化状态。值得注意的是,通过使用栅极电压调整局部费米能量并改变电荷掺杂的类型,可以在较大的偏置范围内进行完美的自旋谷极化AR。发现具有$ p $ type掺杂的拟议结构具有较大的自旋谷极化的Andreev电导和高温电导。我们进一步表明,根据TMDC/CRI $ _3 $层的TMDC材料和化学潜力,扭曲可以导致抑制或显着增加Andreev电导,并增强小于超导状态的化学电位的导热电位。

The broad tunability of the proximity exchange effect between transition-metal dichalcogenides (TMDCs) and chromium iodide (CrI$_3$) heterostructures offers intriguing possibilities for the use of TMDCs in two-dimensional magnetoelectrics. In this work, the influence of the twist angle and the gate electric field on the electric and thermal transport in a TMDC/CrI$_3$ junction is investigated using the Dirac -Bogoliubov-de Gennes equation. We show that significant amounts can be controlled by spin-splitting of band structures due to spin-orbit interaction, and that the exchange-splitting of bands arises from the proximity effect. The property of the Andreev reflection (AR) process is highly dependent on the spin valley polarized states due to spin-orbit coupling. Remarkably, perfect spin valley polarized AR is possible over a wide bias range by using a gate voltage to tune the local Fermi energy and varying the type of charge doping. The proposed structure with $p$-type doping is found to have larger spin valley polarized Andreev conductance and high thermal conductance. We further show that, depending on the TMDC material and chemical potential of the TMDC/CrI$_3$ layer, twisting can lead to suppression or a significant increase in Andreev conductance as well as enhancement of thermal conductance for chemical potentials smaller than that of the superconducting regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源