论文标题
在解义量子临界时的双重动态缩放
Dual dynamic scaling in deconfined quantum criticality
论文作者
论文摘要
出现的对称性是脱成根量子临界点(DQCP)中的特征现象之一。由于其非平衡概括,最近在$ j $ -j $ q_3 $型号的DQCP的非平衡假想时间放松动力学中发现了双动态缩放。在这项工作中,我们研究了$ j $ - $ q_2 $型号中的非平衡假想时间放松动力学,该模型还拥有属于相同平衡通用类别的DQCP。我们不仅在临界点验证了双动态缩放的普遍性,而且还要研究调谐参数远离临界点时的崩溃和痕迹。我们还讨论了其在量子计算机设备中的可能实验实现。
Emergent symmetry is one of the characteristic phenomena in deconfined quantum critical point (DQCP). As its nonequilibrium generalization, the dual dynamic scaling was recently discovered in the nonequilibrium imaginary-time relaxation dynamics in the DQCP of the $J$-$Q_3$ model. In this work, we study the nonequilibrium imaginary-time relaxation dynamics in the $J$-$Q_2$ model, which also hosts a DQCP belonging to the same equilibrium universality class. We not only verify the universality of the dual dynamic scaling at the critical point, but also investigate the breakdown and the vestige of the dual dynamic scaling when the tuning parameter is away from the critical point. We also discuss its possible experimental realizations in devices of quantum computers.