论文标题

在光滑二氧化硅表面之间的高度浓缩水晶中没有异常的强调

Absence of anomalous underscreening in highly concentrated aqueous electrolytes confined between smooth silica surfaces

论文作者

Kumar, Saravana, Cats, Peter, Alotaibi, Mohammed B., Ayirala, Subhash C., Yousef, Ali A., van Roij, René, Siretanu, Igor, Mugele, Frieder

论文摘要

最新的实验和一系列随后的理论研究表明,高度浓缩电解质溶液中的通用下划线发生。我们使用各种碱金属的氯化物以及混合浓缩盐溶液(涉及单一的阳离子和分层阳离子和阴离子),对浓度的水性盐溶液进行了一组系统的原子力光谱测量,以浓度为1 mm至5 m,在地质形式中均具有典型的含量。使用平坦的底物和亚微米尺寸的胶体探针进行实验,该探针由浸入盐溶液中的平滑氧化硅制成,pH值为6和9,温度为25°C和45°C。尽管最小的尖端样本分离观察到了强烈的排斥力,但探讨的条件均未显示出任何反常远程静电力的迹象,如宏观云母表面所报道。取而代之的是,在$ \ $ \ $ \ $ 2nm及以后的盐浓度为1 m及以上的尖端样本分离上,力是由吸引人的范德华相互作用普遍主导的。基于原始模型的经典密度功能理论的互补计算支持这些实验观察结果,并随着离子浓度的增加而显示出一致的筛选长度降低。

Recent experiments and a series of subsequent theoretical studies suggest the occurrence of universal underscreening in highly concentrated electrolyte solutions. We performed a set of systematic Atomic Force Spectroscopy measurements for aqueous salt solutions in a concentration range from 1 mM to 5 M using chloride salts of various alkali metals as well as mixed concentrated salt solutions (involving both mono- and divalent cations and anions), that mimic concentrated brines typically encountered in geological formations. Experiments were carried out using flat substrates and submicrometer-sized colloidal probes made of smooth oxidized silicon immersed in salt solutions at pH values of 6 and 9 and temperatures of 25 °C and 45 °C. While strong repulsive forces were observed for the smallest tip-sample separations, none of the conditions explored displayed any indication of anomalous long range electrostatic forces as reported for macroscopic mica surfaces. Instead, forces are universally dominated by attractive van der Waals interactions at tip-sample separations of $\approx$2nm and beyond for salt concentrations of 1 M and higher. Complementary calculations based on classical density functional theory for the primitive model support these experimental observations and display a consistent decrease in screening length with increasing ion concentration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源