论文标题
弯曲层压的长度上的投影结构的$ l^2 $ norm绑定
A bound on the $L^2$-norm of a projective structure by the length of the bending lamination
论文作者
论文摘要
可以通过schwarzian衍生物和弯曲层压式$λ$通过Thurston参数化将表面全态二次差异$φ$与复杂的投影结构相关联。在本说明中,我们在$λ$的长度方面获得了$ l^2 $ norm $φ$的上限。该证明使用Krasnov-Schlenker引入的$ W $ - 体积理论。
One can associate to a complex projective structure on a surface holomorphic quadratic differential $Φ$ via the Schwarzian derivative and a bending lamination $λ$ via the Thurston parameterization. In this note we obtain upper bounds on the $L^2$-norm of $Φ$ in terms of the length of $λ$. The proof uses the theory of $W$-volume introduced by Krasnov-Schlenker.