论文标题

对抗风险的许多面孔

The Many Faces of Adversarial Risk

论文作者

Pydi, Muni Sreenivas, Jog, Varun

论文摘要

对抗风险量化了分类器在对抗扰动数据上的性能。文献中出现了许多对对抗风险的定义 - 并非所有数学上严格且细微的细节上都有不同的定义。在本文中,我们重新审视了这些定义,使它们严格,并严格地检查它们的相似性和差异。我们的技术工具来自最佳运输,健壮的统计数据,功能分析和游戏理论。我们的贡献包括以下内容:将Strassen定理概括为不平衡的最佳运输环境,并应用于不平等先验的对抗分类;用$ \ infty $ -Wasserstein不确定性集在对抗性鲁棒性和鲁棒假设检验之间表现出等效性;在对手和算法之间的两人游戏中证明了纯净的纳什平衡;并通过属于$ \ infty $ -Wasserstein不确定性集的一对分布之间的最小贝叶斯误差来表征对抗性风险。我们的结果概括并加深了最近发现的最佳运输与对抗性鲁棒性之间的联系,并揭示了与Choquet能力和游戏理论的新联系。

Adversarial risk quantifies the performance of classifiers on adversarially perturbed data. Numerous definitions of adversarial risk -- not all mathematically rigorous and differing subtly in the details -- have appeared in the literature. In this paper, we revisit these definitions, make them rigorous, and critically examine their similarities and differences. Our technical tools derive from optimal transport, robust statistics, functional analysis, and game theory. Our contributions include the following: generalizing Strassen's theorem to the unbalanced optimal transport setting with applications to adversarial classification with unequal priors; showing an equivalence between adversarial robustness and robust hypothesis testing with $\infty$-Wasserstein uncertainty sets; proving the existence of a pure Nash equilibrium in the two-player game between the adversary and the algorithm; and characterizing adversarial risk by the minimum Bayes error between a pair of distributions belonging to the $\infty$-Wasserstein uncertainty sets. Our results generalize and deepen recently discovered connections between optimal transport and adversarial robustness and reveal new connections to Choquet capacities and game theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源