论文标题
多配量聚合物的玩具模型:打开与圆形结构
Toy models of multibranched polymers: opened vs. circular structures
论文作者
论文摘要
我们研究了含有$ f_c $线性分支和$ f_r $封闭环的复杂高斯聚合物的构象性能,并定期将$ n $分支点束缚于线性聚合物骨架(广义瓶颈结构)或闭合聚合物环(装饰环结构)。基于Edwards连续链模型,应用路径积分方法,特别是获得了比较所考虑的复杂结构的回旋半径和相同总分子量的线性链的确切值,作为$ n $,$ f_c $和$ f_r $的函数。定量确认了与越来越多的回路数量的分支大分子的总体有效大小的压缩。通过应用WEI方法获得的数值估计值支持我们的结果。
We study the conformational properties of complex Gaussian polymers containing $f_c$ linear branches and $f_r$ closed loops, periodically tethered at $n$ branching points to either a linear polymer backbone (generalized bottlebrush structures) or closed polymer ring (decorated ring structure). Applying the path integration method, based on Edwards continuous chain model, we obtain in particular the exact values for the size ratios comparing the gyration radii of considered complex structures and linear chains of the same total molecular weight, as functions of $n$, $f_c$ and $f_r$. Compactification of the overall effective size of branched macromolecules with the increasing number of loops is quantitatively confirmed. Our results are supported by numerical estimates obtained by application of Wei's method.