论文标题
图表中的接近,遥远和最大程度
Proximity, remoteness and maximum degree in graphs
论文作者
论文摘要
连接图$ g $的顶点$ v $的平均距离是从$ v $到$ g $的所有其他顶点的算术平均值。 $ g $的接近$π(g)$和远程$ρ(g)$分别是$ g $的顶点的最小值和最大距离。 在本文中,我们在给定顺序,最小程度和最高程度的图形图上给出了上限。我们的边界除了增材常数外,我们的边界很敏锐。
The average distance of a vertex $v$ of a connected graph $G$ is the arithmetic mean of the distances from $v$ to all other vertices of $G$. The proximity $π(G)$ and the remoteness $ρ(G)$ of $G$ are the minimum and the maximum of the average distances of the vertices of $G$, respectively. In this paper, we give upper bounds on the remoteness and proximity for graphs of given order, minimum degree and maximum degree. Our bounds are sharp apart from an additive constant.