论文标题

图表中的接近,遥远和最大程度

Proximity, remoteness and maximum degree in graphs

论文作者

Dankelmann, Peter, Mafunda, Sonwabile, Mallu, Sufiyan

论文摘要

连接图$ g $的顶点$ v $的平均距离是从$ v $到$ g $的所有其他顶点的算术平均值。 $ g $的接近$π(g)$和远程$ρ(g)$分别是$ g $的顶点的最小值和最大距离。 在本文中,我们在给定顺序,最小程度和最高程度的图形图上给出了上限。我们的边界除了增材常数外,我们的边界很敏锐。

The average distance of a vertex $v$ of a connected graph $G$ is the arithmetic mean of the distances from $v$ to all other vertices of $G$. The proximity $π(G)$ and the remoteness $ρ(G)$ of $G$ are the minimum and the maximum of the average distances of the vertices of $G$, respectively. In this paper, we give upper bounds on the remoteness and proximity for graphs of given order, minimum degree and maximum degree. Our bounds are sharp apart from an additive constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源