论文标题

象征性轨道的渐近性全态理论

Asymptotically holomorphic theory for symplectic orbifolds

论文作者

Gironella, Fabio, Muñoz, Vicente, Zhou, Zhengyi

论文摘要

我们将唐纳森的渐变性全态技术扩展到符号圆形。更确切地说,给定一个符号轨道,使得符号形式定义了整数的共同体学类别,我们证明存在较大的可量化线束的大张量幂的部分,使它们的零集合是符号的subbifolds。然后,我们为这些亚凸起的lefschetz超平面定理得出了将其实际的同胞计算到中间维的。当环境多种多样满足这些属性时,我们还为它们获得了硬左手和形式属性。

We extend Donaldson's asymptotically holomorphic techniques to symplectic orbifolds. More precisely, given a symplectic orbifold such that the symplectic form defines an integer cohomology class, we prove that there exist sections of large tensor powers of the prequantizable line bundle such that their zero sets are symplectic suborbifolds. We then derive a Lefschetz hyperplane theorem for these suborbifolds, that computes their real cohomology up to middle dimension. We also get the hard Lefschetz and formality properties for them, when the ambient manifold satisfies those properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源