论文标题

可扩展的高性能加速器量子处理器

Scalable High-Performance Fluxonium Quantum Processor

论文作者

Nguyen, Long B., Koolstra, Gerwin, Kim, Yosep, Morvan, Alexis, Chistolini, Trevor, Singh, Shraddha, Nesterov, Konstantin N., Jünger, Christian, Chen, Larry, Pedramrazi, Zahra, Mitchell, Bradley K., Kreikebaum, John Mark, Puri, Shruti, Santiago, David I., Siddiqi, Irfan

论文摘要

朝着通用耐断层量子计算的硬件的技术开发需要具有高性能的大规模处理单元。尽管磁通量具有很高的连贯性和较大的非谐度,但尚未系统地探索它们的可伸缩性。在这项工作中,我们提出了一个超导量子信息处理器,基于紧凑的高氧化磁盘,具有抑制的串扰,降低设计复杂性,提高了操作效率,高保真门以及对参数波动的阻力。在此体系结构中,使用与公共汽车连接的单个谐振器分散地读数,并通过组合的片上RF和DC控制线操纵,这两者都可以设计为具有较低的串扰。多路耦合方法可以使高稳态计算状态之间的交换相互作用,同时抑制了伪造的静态ZZ速率,从而导致快速和高保真的纠缠大门。我们从数值上研究了交叉共振控制的 - 不和AC-stark Controled-Z操作,揭示了Qubit-Qubit-Qubit Dewoning带宽高达1 GHz的低栅极误差。我们对频率拥挤的研究表明,量子处理器的制造产量很高,包括数千个Qubits。此外,我们估计低资源开销,以使用XZZX表面代码抑制逻辑错误率。这些结果有望具有可扩展的量子体系结构,并具有高性能追求通用量子计算。

The technological development of hardware heading toward universal fault-tolerant quantum computation requires a large-scale processing unit with high performance. While fluxonium qubits are promising with high coherence and large anharmonicity, their scalability has not been systematically explored. In this work, we propose a superconducting quantum information processor based on compact high-coherence fluxoniums with suppressed crosstalk, reduced design complexity, improved operational efficiency, high-fidelity gates, and resistance to parameter fluctuations. In this architecture, the qubits are readout dispersively using individual resonators connected to a common bus and manipulated via combined on-chip RF and DC control lines, both of which can be designed to have low crosstalk. A multi-path coupling approach enables exchange interactions between the high-coherence computational states and at the same time suppresses the spurious static ZZ rate, leading to fast and high-fidelity entangling gates. We numerically investigate the cross resonance controlled-NOT and the differential AC-Stark controlled-Z operations, revealing low gate error for qubit-qubit detuning bandwidth of up to 1 GHz. Our study on frequency crowding indicates high fabrication yield for quantum processors consisting of over thousands of qubits. In addition, we estimate low resource overhead to suppress logical error rate using the XZZX surface code. These results promise a scalable quantum architecture with high performance for the pursuit of universal quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源