论文标题

the的链序列和零件的零r_ {ii} $类型的复发关系

Chain sequences and Zeros of a perturbed $R_{II}$ type recurrence relation

论文作者

Shukla, Vinay, Swaminathan, A.

论文摘要

在此手稿中,正交多项式的新代数和分析方面满足$ r_ {ii} $ type type type recurstrence Relience Relience \ begin {align*} \ Mathcal {p} _ {p} _ {n+1} (x-a_n)(x-b_n)\ Mathcal {p} _ {n-1}(x),\ quad n \ geq 0,\ end {align*},其中$λ_n$是正链序列,$ a_n $,$ a_n $,$ b_n $,$ b_n $,$ c_n $是$ c_n $ sequines con c_n $ sequess a $ c_n $} $} = 0 $和$ \ MATHCAL {P} _0(X)= 1 $,当复发系数受到干扰时。具体而言,在给出了具有零的交织和单调性属性的原始扰动多项式($ r_ {ii} $ type)的新扰动多项式的表示。对于有限的扰动,使用转移矩阵方法来获得新的结构关系。分析了相应的链序列中共脱毛及其对单位圆的后果的影响。还研究了称为互补链序列的相应链序列中的特定扰动及其对相应Verblunsky系数的影响。

In this manuscript, new algebraic and analytic aspects of the orthogonal polynomials satisfying $R_{II}$ type recurrence relation given by \begin{align*} \mathcal{P}_{n+1}(x) = (x-c_n)\mathcal{P}_n(x)-λ_n (x-a_n)(x-b_n)\mathcal{P}_{n-1}(x), \quad n \geq 0, \end{align*} where $λ_n$ is a positive chain sequence and $a_n$, $b_n$, $c_n$ are sequences of real or complex numbers with $\mathcal{P}_{-1}(x) = 0$ and $\mathcal{P}_0(x) = 1$ are investigated when the recurrence coefficients are perturbed. Specifically, representation of new perturbed polynomials (co-polynomials of $R_{II}$ type) in terms of original ones with the interlacing and monotonicity properties of zeros are given. For finite perturbations, a transfer matrix approach is used to obtain new structural relations. Effect of co-dilation in the corresponding chain sequences and their consequences onto the unit circle are analysed. A particular perturbation in the corresponding chain sequence called complementary chain sequences and its effect on the corresponding Verblunsky coefficients is also studied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源