论文标题
在三角形量子畜栏中选择性诱捕六角形扭曲的拓扑表面状态
Selective Trapping of Hexagonally Warped Topological Surface States in a Triangular Quantum Corral
论文作者
论文摘要
三维拓扑绝缘子(TI)的表面构成二维无质量零食费米(DFS),其无间隙和自旋螺旋的性质产生了许多外来现象,例如拓扑表面态的免疫力(TSS)的免疫力。这导致了它们通过表面缺陷或潜在障碍的高传递。以前在金属表面上详细阐述的量子柱可以用作纳米尺寸的电子谐振器,以通过量子限制来捕获Schrödinger电子。因此,在类似情况下,将TSS的狄拉克电子纳入测试是令人着迷的,关于它们的特殊性质。在这里,我们报告了通过在BI2TE3膜表面上外上程生长的BI BiLayer纳米结构制造的三角量子畜栏(TQC)中TSS的行为。与圆形畜栏不同,TQC应该对DFS完全透明。通过在真实空间中通过低温扫描隧道显微镜映射TSS内部TSS的电子结构,可以观察到TSS电子的捕获和去捕获行为。选择规则被发现由TSS恒定能量轮廓的几何形状和自旋纹理控制在BI2TE3中的强六边形翘曲上。仔细分析准结合状态的量子干扰模式产生了捕获的TSS的相应波向量,通过该波形,通过这种捕获机制在不同方向上有利于动量的诱捕机制。我们的工作表明了TSS的扩展性质,并阐明了在存在复杂的表面状态结构的情况下捕获TSS的选择规则,从而深入了解了TIS中DFS的有效工程。
The surface of a three-dimensional topological insulator (TI) hosts two-dimensional massless Dirac fermions (DFs), the gapless and spin-helical nature of which yields many exotic phenomena, such as the immunity of topological surface states (TSS) to back-scattering. This leads to their high transmission through surface defects or potential barriers. Quantum corrals, previously elaborated on metal surfaces, can act as nanometer-sized electronic resonators to trap Schrödinger electrons by quantum confinement. It is thus intriguing, concerning their peculiar nature, to put the Dirac electrons of TSS to the test in similar circumstances. Here, we report the behaviors of TSS in a triangular quantum corral (TQC) fabricated by epitaxially growing Bi bilayer nanostructures on the surfaces of Bi2Te3 films. Unlike a circular corral, the TQC is supposed to be totally transparent for DFs. By mapping the electronic structure of TSS inside TQCs through a low-temperature scanning tunneling microscope in the real space, both the trapping and de-trapping behaviors of the TSS electrons are observed. The selection rules are found to be governed by the geometry and spin texture of the constant energy contour of TSS upon the strong hexagonal warping in Bi2Te3. Careful analysis of the quantum interference patterns of quasi-bound states yields the corresponding wave vectors of trapped TSS, through which two trapping mechanisms favoring momenta in different directions are uncovered. Our work indicates the extended nature of TSS and elucidates the selection rules of the trapping of TSS in the presence of a complicated surface state structure, giving insights into the effective engineering of DFs in TIs.