论文标题

半群环是微弱的krull域

Semigroup rings as weakly Krull domains

论文作者

Chang, Gyu Whan, Fadinger, Victor, Windisch, Daniel

论文摘要

令$ d $是一个积分域,$γ$是具有身份元素和商组$ g $的无扭转的可交换(添加剂)半群。 In this paper, we show that if char$(D)=0$ (resp., char$(D)=p>0$), then $D[Γ]$ is a weakly Krull domain if and only if $D$ is a weakly Krull UMT-domain, $Γ$ is a weakly Krull UMT-monoid, and $G$ is of type $(0,0,0, \dots )$ (resp., type $(0,0,0, \ dots)$除$ p $)。此外,我们给出了此结果的算术应用。

Let $D$ be an integral domain and $Γ$ be a torsion-free commutative cancellative (additive) semigroup with identity element and quotient group $G$. In this paper, we show that if char$(D)=0$ (resp., char$(D)=p>0$), then $D[Γ]$ is a weakly Krull domain if and only if $D$ is a weakly Krull UMT-domain, $Γ$ is a weakly Krull UMT-monoid, and $G$ is of type $(0,0,0, \dots )$ (resp., type $(0,0,0, \dots )$ except $p$). Moreover, we give arithmetical applications of this result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源