论文标题

偏见管道改善了基于X射线的肺结节检测的深度学习模型概括

Debiasing pipeline improves deep learning model generalization for X-ray based lung nodule detection

论文作者

Horry, Michael, Chakraborty, Subrata, Pradhan, Biswajeet, Paul, Manoranjan, Zhu, Jing, Loh, Hui Wen, Barua, Prabal Datta, Arharya, U. Rajendra

论文摘要

肺癌是全球癌症死亡的主要原因,良好的预后取决于早期诊断。不幸的是,肺癌早期诊断的筛查计划并不常见。这是由于处于远离医疗机构的农村地区的高危群体而不是部分。到达这些人群将需要一种缩放方法,以结合移动性,低成本,速度,准确性和隐私性。我们可以通过将胸部X射线成像模式与联合深度学习方法相结合,只要对联盟模型进行统一数据培训,以确保没有单个数据源可以在任何时间点上偏向该模型,否则可以解决这些问题。在这项研究中,我们表明,将均匀的图像进行了预处理管道,该管道均匀地均匀地进行了固定和意见,胸部X射线图像可以改善内部分类和外部概括,为低成本且基于深度学习的肺癌筛查铺平了道路。进化修剪机制用于从公开可用的肺结节X射线数据集中训练最有用的图像的结节检测模型。直方图均衡用于消除图像亮度和对比度的系统差异。使用肺场分割,关闭裁剪和肋骨抑制操作员的所有组合进行模型训练。我们表明,这种预处理的管道会导致深度学习模型,这些模型通过消融研究成功地概括了独立的肺结核数据集,以评估每个操作员在本管道中的贡献。在通过肺场分割的已知混杂变量的胸部X射线图像,以及骨结构中信号噪声的抑制,我们可以训练一种高度准确的深度学习肺结检测算法,其出色的概括精度为89%,可在未看到数据中对结节样品进行89%的出色概括。

Lung cancer is the leading cause of cancer death worldwide and a good prognosis depends on early diagnosis. Unfortunately, screening programs for the early diagnosis of lung cancer are uncommon. This is in-part due to the at-risk groups being located in rural areas far from medical facilities. Reaching these populations would require a scaled approach that combines mobility, low cost, speed, accuracy, and privacy. We can resolve these issues by combining the chest X-ray imaging mode with a federated deep-learning approach, provided that the federated model is trained on homogenous data to ensure that no single data source can adversely bias the model at any point in time. In this study we show that an image pre-processing pipeline that homogenizes and debiases chest X-ray images can improve both internal classification and external generalization, paving the way for a low-cost and accessible deep learning-based clinical system for lung cancer screening. An evolutionary pruning mechanism is used to train a nodule detection deep learning model on the most informative images from a publicly available lung nodule X-ray dataset. Histogram equalization is used to remove systematic differences in image brightness and contrast. Model training is performed using all combinations of lung field segmentation, close cropping, and rib suppression operators. We show that this pre-processing pipeline results in deep learning models that successfully generalize an independent lung nodule dataset using ablation studies to assess the contribution of each operator in this pipeline. In stripping chest X-ray images of known confounding variables by lung field segmentation, along with suppression of signal noise from the bone structure we can train a highly accurate deep learning lung nodule detection algorithm with outstanding generalization accuracy of 89% to nodule samples in unseen data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源