论文标题

珍珠:平行的进化和加固学习库

Pearl: Parallel Evolutionary and Reinforcement Learning Library

论文作者

Tangri, Rohan, Mandic, Danilo P., Constantinides, Anthony G.

论文摘要

强化学习越来越多地在跨领域取得成功,在这些领域中可以将问题表示为马尔可夫决策过程。进化计算算法也已证明在该领域成功,表现出与通常更复杂的增强学习的相似性能。尽管存在许多开源增强学习和进化计算库,但没有公开可用的库结合了增强比较,合作或可视化的两种方法。为此,我们创建了Pearl(https://github.com/londonnode/pearl),这是一个开源的Python库,旨在允许研究人员快速,方便地执行优化的强化学习,进化计算和两者的组合。 PEARL中的关键功能包括:模块化和可扩展的组件,自明的模块设置,张板集成,自定义回调和全面可视化。

Reinforcement learning is increasingly finding success across domains where the problem can be represented as a Markov decision process. Evolutionary computation algorithms have also proven successful in this domain, exhibiting similar performance to the generally more complex reinforcement learning. Whilst there exist many open-source reinforcement learning and evolutionary computation libraries, no publicly available library combines the two approaches for enhanced comparison, cooperation, or visualization. To this end, we have created Pearl (https://github.com/LondonNode/Pearl), an open source Python library designed to allow researchers to rapidly and conveniently perform optimized reinforcement learning, evolutionary computation and combinations of the two. The key features within Pearl include: modular and expandable components, opinionated module settings, Tensorboard integration, custom callbacks and comprehensive visualizations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源