论文标题

随机$ p $ - 亚种矩阵的共同分布

Joint distribution of the cokernels of random $p$-adic matrices

论文作者

Lee, Jungin

论文摘要

在本文中,我们研究了随机$ p $ - adic矩阵的共同分布。令$ p $为prime,$ p_1(t),\ cdots,p_l(t)\ in \ mathbb {z} _p [t] $是nocion polyenmials,其还原$ p $ in $ \ mathbb {f} _p [t] _p [t] $ nistical and Intressible和irreduccible。我们确定cokernels $ \ text {cok}(p_1(a)),\ cdots,\ text {cok}(p_l(a))$的联合分布的限制,用于随机$ n \ times n \ times n $ matrix $ a $ a $ a $ a $ a $ a $ a $ \ mathbb {z} _p $ afty ting a haar c $ n of haar unfty。通过应用随机矩阵模型的线性化,我们还提供了一个概括,从而概括了该结果。最后,我们提供了一个足够的条件,即cokernels $ \ text {cok}(a)$和$ \ text {cok}(a+b_n)$作为$ n \ rightarrow \ infty $独立,其中$ b_n $是$ n \ times n \ times n $ n $ a $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ and $ n $ and $ and $ n $ and $ n $ and $ n $ and $ and $ n $ and $ n $ and $ n $ and $ n $ and $ and $ n $ and $ and $矩阵超过$ \ mathbb {z} _p $。

In this paper, we study the joint distribution of the cokernels of random $p$-adic matrices. Let $p$ be a prime and $P_1(t), \cdots, P_l(t) \in \mathbb{Z}_p[t]$ be monic polynomials whose reductions modulo $p$ in $\mathbb{F}_p[t]$ are distinct and irreducible. We determine the limit of the joint distribution of the cokernels $\text{cok} (P_1(A)), \cdots, \text{cok}(P_l(A))$ for a random $n \times n$ matrix $A$ over $\mathbb{Z}_p$ with respect to Haar measure as $n \rightarrow \infty$. By applying the linearization of a random matrix model, we also provide a conjecture which generalizes this result. Finally, we provide a sufficient condition that the cokernels $\text{cok}(A)$ and $\text{cok}(A+B_n)$ become independent as $n \rightarrow \infty$, where $B_n$ is a fixed $n \times n$ matrix over $\mathbb{Z}_p$ for each $n$ and $A$ is a random $n \times n$ matrix over $\mathbb{Z}_p$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源