论文标题
全体形态cartan几何形状的变形理论,ii
Deformation Theory of Holomorphic Cartan Geometries, II
论文作者
论文摘要
在\ cite {bds}的延续中,我们研究了允许基础复杂歧管移动的全态cartan几何形状的变形。计算了平坦的圆形纸箱几何形状的无限变形空间。我们表明,自然健忘的地图,从平坦的圆形cartan几何形状的无穷小变形到拓扑歧管上基本平坦的主要束的无穷小变形,是同构的同构。
In this continuation of \cite{BDS}, we investigate the deformations of holomorphic Cartan geometries where the underlying complex manifold is allowed to move. The space of infinitesimal deformations of a flat holomorphic Cartan geometry is computed. We show that the natural forgetful map, from the infinitesimal deformations of a flat holomorphic Cartan geometry to the infinitesimal deformations of the underlying flat principal bundle on the topological manifold, is an isomorphism.