论文标题
数字化SU(2)量规场和冻结过渡
Digitising SU(2) Gauge Fields and the Freezing Transition
论文作者
论文摘要
仪表组的有效离散是至关重要的,对于使用张量网络或量子计算机进行晶格仪理论模拟的长期观点。但是,对于U $(1)$以外的任何Lie Group,都没有渐近密集的离散子组类别。因此,仅限于亚组的离散剂必定会导致在弱耦合处的蒙特卡洛模拟冻结,因此需要在没有组结构的情况下进行替代分区。在这项工作中,我们为所有SU $(2)$的离散子组和不同类别的渐近密集子集提供了对这种冻结的全面分析。我们发现该子集的适当选择允许对任意耦合进行解散模拟,尽管必须谨慎使用不均匀分布点的重量。斐波那契螺旋的一般版本似乎特别有效,接近最佳。
Efficient discretisations of gauge groups are crucial with the long term perspective of using tensor networks or quantum computers for lattice gauge theory simulations. For any Lie group other than U$(1)$, however, there is no class of asymptotically dense discrete subgroups. Therefore, discretisations limited to subgroups are bound to lead to a freezing of Monte Carlo simulations at weak couplings, necessitating alternative partitionings without a group structure. In this work we provide a comprehensive analysis of this freezing for all discrete subgroups of SU$(2)$ and different classes of asymptotically dense subsets. We find that an appropriate choice of the subset allows unfrozen simulations for arbitrary couplings, though one has to be careful with varying weights of unevenly distributed points. A generalised version of the Fibonacci spiral appears to be particularly efficient and close to optimal.