论文标题
哪种风格使我有吸引力?关于stylegan的可解释的控制发现和反事实解释
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN
论文作者
论文摘要
GAN中的语义上的潜在子空间在图像生成中提供了丰富的可解释控制。本文在使用stylegan2的面部生成场景中,在语义潜在子空间分析方面包括两个贡献。首先,我们提出了一种新颖的方法来通过利用现有的面部分析模型,例如面部解析器和面部标志性检测器来消除潜在的子空间语义。这些模型提供了具有非常具体和可解释的语义含义(例如,改变面部形状或更改肤色)以限制潜在子空间分离的各种标准的灵活性。以前可以使用构造标准发现丰富的潜在空间控制未知。其次,我们提出了一种新的观点,通过在我们发现的可解释潜在子空间中产生反事实来解释CNN分类器的行为。这种解释有助于揭示分类器是否按预期学习语义。各种解开标准的实验证明了我们方法的有效性。我们认为,这种方法有助于CNN的图像操纵和反事实解释性。该代码可在\ url {https://github.com/prclibo/ice}上获得。
The semantically disentangled latent subspace in GAN provides rich interpretable controls in image generation. This paper includes two contributions on semantic latent subspace analysis in the scenario of face generation using StyleGAN2. First, we propose a novel approach to disentangle latent subspace semantics by exploiting existing face analysis models, e.g., face parsers and face landmark detectors. These models provide the flexibility to construct various criterions with very concrete and interpretable semantic meanings (e.g., change face shape or change skin color) to restrict latent subspace disentanglement. Rich latent space controls unknown previously can be discovered using the constructed criterions. Second, we propose a new perspective to explain the behavior of a CNN classifier by generating counterfactuals in the interpretable latent subspaces we discovered. This explanation helps reveal whether the classifier learns semantics as intended. Experiments on various disentanglement criterions demonstrate the effectiveness of our approach. We believe this approach contributes to both areas of image manipulation and counterfactual explainability of CNNs. The code is available at \url{https://github.com/prclibo/ice}.