论文标题

特征转换用于图像数据增加

Feature transforms for image data augmentation

论文作者

Nanni, Loris, Paci, Michelangelo, Brahnam, Sheryl, Lumini, Alessandra

论文摘要

卷积神经网络(CNN)的一个问题是,它们需要大型数据集来获得足够的鲁棒性。在小型数据集上,它们容易过度拟合。已经提出了许多方法来克服CNN的缺点。在不容易收集其他样本的情况下,一种常见的方法是使用增强技术从现有数据中生成更多数据点。在图像分类中,许多增强方法都使用简单的图像操纵算法。在这项工作中,我们通过添加通过组合14种增强方法生成的图像来构建数据级别,第一次提出了其中三种。这些新型方法基​​于傅立叶变换(FT),ra transform(RT)和离散余弦变换(DCT)。预处理的RESNET50网络在训练集上进行了填充,其中包括从每种增强方法中得出的图像。这些网络和几个融合均在11个基准测试中进行了评估和比较。结果表明,通过组合不同的数据增强方法来产生分类器,这些分类器不仅可以与最新的竞争竞争,而且经常超过文献中报道的最佳方法,从而在数据级上建立合奏。

A problem with Convolutional Neural Networks (CNNs) is that they require large datasets to obtain adequate robustness; on small datasets, they are prone to overfitting. Many methods have been proposed to overcome this shortcoming with CNNs. In cases where additional samples cannot easily be collected, a common approach is to generate more data points from existing data using an augmentation technique. In image classification, many augmentation approaches utilize simple image manipulation algorithms. In this work, we build ensembles on the data level by adding images generated by combining fourteen augmentation approaches, three of which are proposed here for the first time. These novel methods are based on the Fourier Transform (FT), the Radon Transform (RT) and the Discrete Cosine Transform (DCT). Pretrained ResNet50 networks are finetuned on training sets that include images derived from each augmentation method. These networks and several fusions are evaluated and compared across eleven benchmarks. Results show that building ensembles on the data level by combining different data augmentation methods produce classifiers that not only compete competitively against the state-of-the-art but often surpass the best approaches reported in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源