论文标题

评估复杂的,深度型数据集中的数据插补策略:欧盟纵横立动物欧洲自闭症项目的情况

Evaluation of data imputation strategies in complex, deeply-phenotyped data sets: the case of the EU-AIMS Longitudinal European Autism Project

论文作者

Llera, A., Brammer, M., Oakley, B., Tillmann, J., Zabihi, M., Mei, T., Charman, T., Ecker, C., Acqua, F. Dell, Banaschewski, T., Moessnang, C., Baron-Cohen, S., Holt, R., Durston, S., Murphy, D., Loth, E., Buitelaar, J. K., Floris, D. L., Beckmann, C. F.

论文摘要

在典型发展的人群以及精神病研究中,已经进行了越来越多的大规模多模式研究计划。由于难以评估大量参与者的多种措施,因此缺少数据是此类数据集中的一个常见问题。当研究人员旨在探索多种措施之间的关系时,丢失数据的后果会累积。在这里,我们旨在评估不同的插图策略,以填充来自大型(总n = 764)的临床数据中的缺失值,并深入表征n = 453个自闭症个体的临床和认知工具的范围(即管理的临床和认知工具范围),n = 311个对照个体,作为EU-AIMS Longitudinal Europeal Autism Isalism Project(leap)招募的一部分。特别是我们考虑了15个参与者的重叠子集的160项临床指标。我们使用两种简单但常见的单变量策略,平均值和中位数,以及一种循环回归方法,涉及四个独立的多元回归模型,包括线性模型,贝叶斯山脊回归以及几种非线性模型,决策树,额外的树木,额外的树木和K-Neighighbours回归。我们使用传统的平方误差来评估模型,以删除可用的数据,并考虑观察到的分布和估算的分布之间的KL差异。我们表明,与典型的单变量方法相比,所测试的所有多变量方法都提供了实质性的改进。此外,我们的分析表明,在测试的所有15个数据吸收中,额外的树回归方法提供了最佳的全球结果。这允许选择一个唯一的模型为LEAP项目归为缺失的数据,并提供一组固定的估算临床数据,以便将来使用LEAP数据集使用的研究人员使用。

An increasing number of large-scale multi-modal research initiatives has been conducted in the typically developing population, as well as in psychiatric cohorts. Missing data is a common problem in such datasets due to the difficulty of assessing multiple measures on a large number of participants. The consequences of missing data accumulate when researchers aim to explore relationships between multiple measures. Here we aim to evaluate different imputation strategies to fill in missing values in clinical data from a large (total N=764) and deeply characterised (i.e. range of clinical and cognitive instruments administered) sample of N=453 autistic individuals and N=311 control individuals recruited as part of the EU-AIMS Longitudinal European Autism Project (LEAP) consortium. In particular we consider a total of 160 clinical measures divided in 15 overlapping subsets of participants. We use two simple but common univariate strategies, mean and median imputation, as well as a Round Robin regression approach involving four independent multivariate regression models including a linear model, Bayesian Ridge regression, as well as several non-linear models, Decision Trees, Extra Trees and K-Neighbours regression. We evaluate the models using the traditional mean square error towards removed available data, and consider in addition the KL divergence between the observed and the imputed distributions. We show that all of the multivariate approaches tested provide a substantial improvement compared to typical univariate approaches. Further, our analyses reveal that across all 15 data-subsets tested, an Extra Trees regression approach provided the best global results. This allows the selection of a unique model to impute missing data for the LEAP project and deliver a fixed set of imputed clinical data to be used by researchers working with the LEAP dataset in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源