论文标题
城市地区嵌入的多段融合网络
Multi-Graph Fusion Networks for Urban Region Embedding
论文作者
论文摘要
从人类流动数据中学习城市地区的嵌入可以揭示区域的功能,然后启用相关但独特的任务,例如犯罪预测。人类流动性数据包含丰富而丰富的信息,这些信息可用于跨域任务的综合区域嵌入。在本文中,我们建议多段融合网络(MGFN)启用跨域预测任务。首先,我们通过移动图融合模块将图形与时空相似性作为移动性模式集成在一起。然后,在移动性模式联合学习模块中,我们设计了多层次跨注意机制,以根据基于模式和模式间信息从多个移动性模式中学习全面的嵌入。最后,我们对现实世界中的城市数据集进行了广泛的实验。实验结果表明,所提出的MGFN的表现优于最先进的方法,最大提高了12.35%。
Learning the embeddings for urban regions from human mobility data can reveal the functionality of regions, and then enables the correlated but distinct tasks such as crime prediction. Human mobility data contains rich but abundant information, which yields to the comprehensive region embeddings for cross domain tasks. In this paper, we propose multi-graph fusion networks (MGFN) to enable the cross domain prediction tasks. First, we integrate the graphs with spatio-temporal similarity as mobility patterns through a mobility graph fusion module. Then, in the mobility pattern joint learning module, we design the multi-level cross-attention mechanism to learn the comprehensive embeddings from multiple mobility patterns based on intra-pattern and inter-pattern messages. Finally, we conduct extensive experiments on real-world urban datasets. Experimental results demonstrate that the proposed MGFN outperforms the state-of-the-art methods by up to 12.35% improvement.