论文标题

神经建筑寻找基于面部属性的抑郁识别

Neural Architecture Searching for Facial Attributes-based Depression Recognition

论文作者

Chen, Mingzhe, Xiao, Xi, Zhang, Bin, Liu, Xinyu, Lu, Runiu

论文摘要

最近的研究表明,抑郁症可以从人的面部属性中部分反映出来。由于面部属性具有各种数据结构并携带不同的信息,因此现有的方法无法专门考虑从它们中提取与抑郁症相关的特征的最佳方法,并研究了最佳的融合策略。在本文中,我们建议扩展神经体系结构搜索(NAS)技术,以设计针对基于多种面部属性的抑郁识别的最佳模型,该模型可以在小型数据集中有效且可靠地实现。我们的方法首先对每个面部属性的特征提取器进行了更温暖的步骤,旨在在很大程度上减少搜索空间并提供自定义的体系结构,每个特征提取器都可以是卷积神经网络(CNN)或图形神经网络(GNN)。然后,我们对所有功能提取器和融合网络进行了端到端的体系结构搜索,从而使互补的抑郁提示与冗余性较小。 AVEC 2016数据集的实验结果表明,通过我们的方法探索的模型可实现突破性的表现,并以27 \%和30 \%的RMSE和MAE的改进来实现现有的最新效果。鉴于这些发现,本文提供了扎实的证据,并且是将NAS应用于基于数据的基于数据的心理健康分析的强大基准。

Recent studies show that depression can be partially reflected from human facial attributes. Since facial attributes have various data structure and carry different information, existing approaches fail to specifically consider the optimal way to extract depression-related features from each of them, as well as investigates the best fusion strategy. In this paper, we propose to extend Neural Architecture Search (NAS) technique for designing an optimal model for multiple facial attributes-based depression recognition, which can be efficiently and robustly implemented in a small dataset. Our approach first conducts a warmer up step to the feature extractor of each facial attribute, aiming to largely reduce the search space and providing customized architecture, where each feature extractor can be either a Convolution Neural Networks (CNN) or Graph Neural Networks (GNN). Then, we conduct an end-to-end architecture search for all feature extractors and the fusion network, allowing the complementary depression cues to be optimally combined with less redundancy. The experimental results on AVEC 2016 dataset show that the model explored by our approach achieves breakthrough performance with 27\% and 30\% RMSE and MAE improvements over the existing state-of-the-art. In light of these findings, this paper provides solid evidences and a strong baseline for applying NAS to time-series data-based mental health analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源