论文标题
用超相关的哈密顿量对分子地面和激发态进行精确量子模拟
Accurate quantum simulation of molecular ground and excited states with a transcorrelated Hamiltonian
论文作者
论文摘要
NISQ ERA设备遇到了许多挑战,例如有限的量子连接性,短相干时间和相当大的门错误率。因此,需要量子算法,需要浅回路深度和低量子计数才能利用这些设备。我们试图借助经典的量子化学理论的规范转化和明确的相关性实现这一目标。在这项工作中,通过与a)与a)明确相关的两体单一操作员的近似相似性转换和普遍的对兴奋的兴奋来消除了库洛姆电子电子奇异性,从而使哈密尔顿尔顿尔顿尔顿尔顿尔顿尔顿群岛(Hamiltonian)和b)有效地描述了一个独立的单一效果,从而有效地描述了效果,从而有效地描述了效果,从而有效地描述了效果,否则对库洛姆电电子奇异性的效果的效果,从而有效地描述了效果,从而有效地描述了效果,否则cockity的效果均准确地造成了有效的效果。由此产生的超相关哈密顿人能够以平衡的方式描述分子系统的地面和激发态。使用基于单一耦合集群与单打和双打(UCCSD)ANSATZ的Fermionic-Adapt-VQE方法,并且仅是最小基础集合(ANO-RCC-MB),我们证明了跨性的Hamiltonians可以产生与较大较大的CC-PVTZ基础相比的基态能量。这可能导致所需的CNOT门的数量可能减少了三个以上的数量级,而这项工作中研究的化学物种的数量级别。此外,我们将QEOM形式主义与超相关的哈密顿量结合使用,我们将激发能量中的错误减少了一个数量级。这里开发的超相关汉密尔顿人是冬宫,仅包含一体和两体相互作用项,因此可以轻松地与任何量子算法结合使用,以进行准确的电子结构模拟。
NISQ era devices suffer from a number of challenges like limited qubit connectivity, short coherence times and sizable gate error rates. Thus, quantum algorithms are desired that require shallow circuit depths and low qubit counts to take advantage of these devices. We attempt to realize this with the help of classical quantum chemical theories of canonical transformation and explicit correlation. In this work, compact ab initio Hamiltonians are generated classically through an approximate similarity transformation of the Hamiltonian with a) an explicitly correlated two-body unitary operator with generalized pair excitations that remove the Coulombic electron-electron singularities from the Hamiltonian and b) a unitary one-body operator to efficiently capture the orbital relaxation effects required for accurate description of the excited states. The resulting transcorelated Hamiltonians are able to describe both ground and excited states of molecular systems in a balanced manner. Using the fermionic-ADAPT-VQE method based on the unitary coupled cluster with singles and doubles (UCCSD) ansatz and only a minimal basis set (ANO-RCC-MB), we demonstrate that the transcorrelated Hamiltonians can produce ground state energies comparable to the much larger cc-pVTZ basis. This leads to a potential reduction in the number of required CNOT gates by more than three orders of magnitude for the chemical species studied in this work. Furthermore, using the qEOM formalism in conjunction with the transcorrelated Hamiltonian, we reduce the errors in excitation energies by an order of magnitude. The transcorrelated Hamiltonians developed here are Hermitian and contain only one- and two-body interaction terms and thus can be easily combined with any quantum algorithm for accurate electronic structure simulations.