论文标题

AI驱动的非线性接收器中的AI驱动解调器,在带有高功率阻滞剂的共享频谱中

AI-Driven Demodulators for Nonlinear Receivers in Shared Spectrum with High-Power Blockers

论文作者

Mohammadi, Hossein, AlQwider, Walaa, Rahman, Talha Faizur, Marojevic, Vuk

论文摘要

研究表明,通信系统和接收器遭受高功率相邻信号(称为阻滞剂)的损失,这些信号将射频(RF)前端驱动到非线性操作中。由于简单的系统(例如物联网(IoT))将与复杂的通信收发器,雷达和其他频谱消费者共存,因此需要使用简单但自适应的RF非线性解决方案来保护这些系统。因此,本文提出了一种灵活的数据驱动方法,该方法使用简单的人工神经网络(ANN)来帮助去除三阶互调失真(IMD)作为解调过程的一部分。我们介绍并数字评估两个人工智能(AI)增强接收器 - 作为IMD取消器,ANN作为解调器。我们的结果表明,简单的ANN结构可以显着提高具有强阻滞剂的非线性接收器的位错误率(BER)性能,并且ANN体系结构和配置主要取决于RF前端特征,例如三阶截距(IP3)。因此,我们建议接收器具有硬件标签和随着时间的流逝监视这些标签,以便可以有效地自定义AI和软件无线电处理堆栈,并自动更新以应对不断变化的操作条件。

Research has shown that communications systems and receivers suffer from high power adjacent channel signals, called blockers, that drive the radio frequency (RF) front end into nonlinear operation. Since simple systems, such as the Internet of Things (IoT), will coexist with sophisticated communications transceivers, radars and other spectrum consumers, these need to be protected employing a simple, yet adaptive solution to RF nonlinearity. This paper therefore proposes a flexible data driven approach that uses a simple artificial neural network (ANN) to aid in the removal of the third order intermodulation distortion (IMD) as part of the demodulation process. We introduce and numerically evaluate two artificial intelligence (AI)-enhanced receivers-ANN as the IMD canceler and ANN as the demodulator. Our results show that a simple ANN structure can significantly improve the bit error rate (BER) performance of nonlinear receivers with strong blockers and that the ANN architecture and configuration depends mainly on the RF front end characteristics, such as the third order intercept point (IP3). We therefore recommend that receivers have hardware tags and ways to monitor those over time so that the AI and software radio processing stack can be effectively customized and automatically updated to deal with changing operating conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源