论文标题
非欧几里得几何形状的p轨道披露状态
p-orbital disclination states in non-Euclidean geometries
论文作者
论文摘要
脱节是几乎所有晶体材料中存在的无处不在的晶格缺陷。在二维纳米材料中,脱节会导致宿主材料的翘曲和变形,从而产生非欧几里得的几何形状。但是,这种几何形状从未在拓扑现象的背景下进行实验研究。在这里,通过在锥形和鞍形的声学系统中创建脱节的物理实现,我们证明了脱节可以导致非欧几里得表面中拓扑受保护的界限。在设计的蜂窝声晶体中,用于P轨道声波,非欧几里得几何形状与P轨道物理学和条带拓扑相互作用,显示出一致的实验和模拟证实的有趣的新兴特征。我们的研究为非欧几里德几何形状的拓扑现象开辟了一条途径,该途径可能会激发未来对具有弯曲表面的纳米材料中的电子和声子的研究。
Disclinations are ubiquitous lattice defects existing in almost all crystalline materials. In two-dimensional nanomaterials, disclinations lead to the warping and deformation of the hosting material, yielding non-Euclidean geometries. However, such geometries have never been investigated experimentally in the context of topological phenomena. Here, by creating the physical realization of disclinations in conical and saddle-shaped acoustic systems, we demonstrate that disclinations can lead to topologically protected bound modes in non-Euclidean surfaces. In the designed honeycomb sonic crystal for p-orbital acoustic waves, non-Euclidean geometry interplay with the p-orbital physics and the band topology, showing intriguing emergent features as confirmed by consistent experiments and simulations. Our study opens a pathway towards topological phenomena in non-Euclidean geometries that may inspire future studies on, e.g., electrons and phonons in nanomaterials with curved surfaces.