论文标题

拆开图:流动性预测的神经关系推断

Unboxing the graph: Neural Relational Inference for Mobility Prediction

论文作者

Tygesen, Mathias Niemann, Pereira, Francisco C., Rodrigues, Filipe

论文摘要

预测运输系统的供应和需求对于有效的交通管理,控制,优化和计划至关重要。例如,预测人们打算从/到何时乘坐出租车旅行的地方可以支持车队经理分发资源;更好地预测交通速度/拥塞可以实现积极的控制措施或用户更好地选择其路径。众所周知,进行时空预测是一项艰巨的任务,但是最近图形神经网络(GNN)已广泛应用于非欧几里得空间数据。但是,大多数GNN模型都需要一个预定义的图形,到目前为止,研究人员依靠启发式方法来生成该图供模型使用。在本文中,我们使用神经关系推断来学习模型的最佳图。我们的方法具有多种优势:1)变异自动编码器结构允许图形由数据动态确定,并可能通过时间变化; 2)编码器结构允许在图的生成中使用外部数据; 3)可以将贝叶斯先验放在生成的图表上以编码域知识。我们在两个数据集上进行实验,即纽约市黄色出租车和PEMS路交通数据集。在这两个数据集中,我们的表现都优于基准,并显示出与最先进的性能。此外,我们对学习图进行了深入的分析,提供了有关GNN在运输域中使用哪些连接使用的见解。

Predicting the supply and demand of transport systems is vital for efficient traffic management, control, optimization, and planning. For example, predicting where from/to and when people intend to travel by taxi can support fleet managers to distribute resources; better predicting traffic speeds/congestion allows for pro-active control measures or for users to better choose their paths. Making spatio-temporal predictions is known to be a hard task, but recently Graph Neural Networks (GNNs) have been widely applied on non-euclidean spatial data. However, most GNN models require a predefined graph, and so far, researchers rely on heuristics to generate this graph for the model to use. In this paper, we use Neural Relational Inference to learn the optimal graph for the model. Our approach has several advantages: 1) a Variational Auto Encoder structure allows for the graph to be dynamically determined by the data, potentially changing through time; 2) the encoder structure allows the use of external data in the generation of the graph; 3) it is possible to place Bayesian priors on the generated graphs to encode domain knowledge. We conduct experiments on two datasets, namely the NYC Yellow Taxi and the PEMS road traffic datasets. In both datasets, we outperform benchmarks and show performance comparable to state-of-the-art. Furthermore, we do an in-depth analysis of the learned graphs, providing insights on what kinds of connections GNNs use for spatio-temporal predictions in the transport domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源