论文标题
卡勒流形中的核心集
Core Sets in Kahler Manifolds
论文作者
论文摘要
本文的主要目的是研究(非紧凑)Kahler歧管的M-Subharmonic函数的设置核心集。核心集在不同方面通过考虑各种类别的plurisubharmonic功能进行研究。研究这种集合的结构的关键概念之一是伪造。以更一般的方式,我们将根据M-Pseudoconcove集在我们的环境中称为M核的M-Subharmonic函数的核心结构。在M-Subharmonic函数的上下文中,我们定义了M-Harmonic函数,并表明,在$ \ Mathbb {C}^{n}中,(N \ geq 2)$,以及更一般的dimension在任何Kahler cormention中至少在2个kahler cormorde中,至少2,m-Harmonic函数是Plurihariharmons函数pluriharmarmons for $ m m \ geQ 2 $ \ geq 2 $。
The primary objective of this paper is to study core sets in the setting of m-subharmonic functions on the class of (non-compact) Kahler manifolds. Core sets are investigated in different aspects by considering various classes of plurisubharmonic functions. One of the crucial concepts in studying the structure of this kind of sets is the pseudoconcavity. In a more general way, we will have the structure of core defined with respect to the m-subharmonic functions, which we call m-core in our setting, in terms of m-pseudoconcave sets. In the context of m-subharmonic functions, we define m-harmonic functions and show that, in $\mathbb{C}^{n},\,(n \geq 2)$ and more generally in any Kahler manifold of dimension at least 2, m-harmonic functions are pluriharmonic functions for $m \geq 2$.