论文标题

在时间不确定性下,同时进行多机器人旅游指导的人类机器人匹配和路线

Simultaneous Human-robot Matching and Routing for Multi-robot Tour Guiding under Time Uncertainty

论文作者

Fu, Bo, Kathuria, Tribhi, Rizzo, Denise, Castanier, Matthew, Yang, X. Jessie, Ghaffari, Maani, Barton, Kira

论文摘要

这项工作为在具有不确定性的部分知名环境(例如博物馆)中提供了多机巡回演出指导的框架。在拟议的集中式多机器人计划者中,同时匹配和路由问题(SMRP)是根据其选定的景点(POI)与机器人指南相匹配的,并根据不确定的空间和时间估计来生成机器人的路线和时间表。开发了一种大型邻域搜索算法,以有效地为SMRP找到亚最佳的低成本解决方案。多机器人计划者的可伸缩性和最佳性在不同人数,机器人和POI的计算中评估。测试的最大病例涉及50个机器人,250人和50个POI。然后,基于栖息地-AI开发了光真逼真的多机器人模拟平台,以验证不确定的室内环境中的旅游指导性能。结果表明,拟议的集中式巡回策划者是可扩展的,在不同的环境限制下进行计划的平稳权衡,并且可以通过不准确的不确定性估计(一定余量)导致稳健的性能。

This work presents a framework for multi-robot tour guidance in a partially known environment with uncertainty, such as a museum. In the proposed centralized multi-robot planner, a simultaneous matching and routing problem (SMRP) is formulated to match the humans with robot guides according to their selected places of interest (POIs) and generate the routes and schedules for the robots according to uncertain spatial and time estimation. A large neighborhood search algorithm is developed to efficiently find sub-optimal low-cost solutions for the SMRP. The scalability and optimality of the multi-robot planner are evaluated computationally under different numbers of humans, robots, and POIs. The largest case tested involves 50 robots, 250 humans, and 50 POIs. Then, a photo-realistic multi-robot simulation platform was developed based on Habitat-AI to verify the tour guiding performance in an uncertain indoor environment. Results demonstrate that the proposed centralized tour planner is scalable, makes a smooth trade-off in the plans under different environmental constraints, and can lead to robust performance with inaccurate uncertainty estimations (within a certain margin).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源