论文标题

表征无线电干涉测量值的光束误差

Characterizing Beam Errors for Radio Interferometric Observations of Reionization

论文作者

Nasirudin, Ainulnabilah, Prelogovic, David, Murray, Steven G., Mesinger, Andrei, Bernardi, Gianni

论文摘要

21 cm干涉实验中的限制系统效应是由于天空与仪器之间的耦合而导致的色彩。这种耦合由仪器的一束梁来源。因此,重要的是要知道光束的精度极高。在这里,我们演示了如何使用梁模型数据库来表征已知的光束不确定性。在这项介绍性的工作中,我们专注于由于物理偏移和/或车站内损坏的天线引起的光束误差。我们使用公共代码OSKAR来生成一个“理想”的SKA光束,该SKA光束由256个天线形成,该天线在35米的圆圈中定期间隔,以及一个大的“扰动”梁采样分布的大型数据库。我们使用主组件分析(PCA)和内核PCA(KPCA)分解了梁误差(“理想”负式“扰动”)。使用20个组件,我们发现PCA/kPCA可以将数据集中的光束残差减少60-90%,而与理想梁的假设相比。使用对宇宙信号和前景的模拟观察,我们发现假设理想梁在EOR窗口中可能会导致1%的误差,而在2D功率谱的楔形中可能会导致10%。当使用PCA/KPCA来表征梁的不确定性时,功率谱的误差在EOR窗口中缩小到低于0.01%,楔子中的误差<1%。我们的框架可用于表征并在光束中的不确定性上进行边缘化,以进行健壮的下一代21 cm参数估计。

A limiting systematic effect in 21-cm interferometric experiments is the chromaticity due to the coupling between the sky and the instrument. This coupling is sourced by the instrument primary beam; therefore it is important to know the beam to extremely high precision. Here we demonstrate how known beam uncertainties can be characterized using databases of beam models. In this introductory work, we focus on beam errors arising from physically offset and/or broken antennas within a station. We use the public code OSKAR to generate an "ideal" SKA beam formed from 256 antennas regularly-spaced in a 35-m circle, as well as a large database of "perturbed" beams sampling distributions of broken/offset antennas. We decompose the beam errors ("ideal" minus "perturbed") using Principal Component Analysis (PCA) and Kernel PCA (KPCA). Using 20 components, we find that PCA/KPCA can reduce the residual of the beam in our datasets by 60-90% compared with the assumption of an ideal beam. Using a simulated observation of the cosmic signal plus foregrounds, we find that assuming the ideal beam can result in 1% error in the EoR window and 10% in the wedge of the 2D power spectrum. When PCA/KPCA is used to characterize the beam uncertainties, the error in the power spectrum shrinks to below 0.01% in the EoR window and <1% in the wedge. Our framework can be used to characterize and then marginalize over uncertainties in the beam for robust next-generation 21-cm parameter estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源