论文标题

在非常规超导体中的远程相互作用系统和新兴外来相的精确连续体表示

Exact Continuum Representation of Long-range Interacting Systems and Emerging Exotic Phases in Unconventional Superconductors

论文作者

Buchheit, Andreas A., Keßler, Torsten, Schuhmacher, Peter K., Fauseweh, Benedikt

论文摘要

连续限制是研究多体系统的强大工具,但是它们的有效性通常尚不清楚何时存在远程相互作用。在这项工作中,我们严格解决了这个问题,并提出了远程相互作用的晶格的确切表示,该晶格将模型分为描述其连续类似物的术语,整体贡献以及一个完全分辨出微观结构,晶格贡献的术语。对于任何系统尺寸,任何晶格,任何幂律相互作用以及线性,非线性和多原子晶格,我们表明,基于Riemann Zeta函数的多维概括,差异操作员可以描述晶格的贡献,即Epstein Zeta Zeta功能。我们在傅立叶空间中使用我们的代表来解决远程相互作用非常规超导体的重要问题。我们得出了广义的bardeen-cooper--schrieffer间隙方程,并在具有拓扑相变的二维超导体中找到新兴的外来相。最后,我们利用非均衡性希格斯光谱法分析了远程相互作用对冷凝水集体激发的影响。我们表明,相互作用可用于微调希格斯模式的稳定性,从振荡振幅的指数衰减到完全稳定。

Continuum limits are a powerful tool in the study of many-body systems, yet their validity is often unclear when long-range interactions are present. In this work, we rigorously address this issue and put forth an exact representation of long-range interacting lattices that separates the model into a term describing its continuous analog, the integral contribution, and a term that fully resolves the microstructure, the lattice contribution. For any system dimension, any lattice, any power-law interaction, and for linear, nonlinear, and multi-atomic lattices, we show that the lattice contribution can be described by a differential operator based on the multidimensional generalization of the Riemann zeta function, namely the Epstein zeta function. We employ our representation in Fourier space to solve the important problem of long-range interacting unconventional superconductors. We derive a generalized Bardeen--Cooper--Schrieffer gap equation and find emerging exotic phases in two-dimensional superconductors with topological phase transitions. Finally, we utilize non-equilibrium Higgs spectroscopy to analyze the impact of long-range interactions on the collective excitations of the condensate. We show that the interactions can be used to fine-tune the Higgs mode's stability, ranging from exponential decay of the oscillation amplitude up to complete stabilization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源