论文标题
黑暗能源调查5年摄影识别的IA型超新星
The Dark Energy Survey 5-year photometrically identified Type Ia Supernovae
论文作者
论文摘要
作为宇宙学分析的一部分,使用IA型超新星(SN IA)(DES)中的宇宙学分析,我们使用多波段的灯曲线和宿主星系红移提出了镜面鉴定的SN IA样品。为了进行此分析,我们使用了对现实的DES样模拟训练的光度分类框架Supernnova(SNN;Möller等人,2019年)。对于可靠的分类,我们处理DES SN程序(DES-SN)数据并对分类器体系结构进行改进,从而获得了模拟的分类精度超过98%。这是使用集合方法的第一个SN分类,从而产生了更健壮的样本。使用光度法,宿主星系红移和分类概率要求,我们确定了1,863 sne ia,我们从中选择了1,484个宇宙学级SNE IA,跨越了0.07 <z <z <1.14的红移范围。我们发现光度法选择样品的光曲线特性与模拟之间的良好一致。此外,我们使用两种类型的贝叶斯神经网络分类器创建类似的SN IA样品,这些分类器可为分类概率提供不确定性。我们测试将这些不确定性用作候选候选者和模型信心的指标的可行性。最后,我们讨论了光度图样本和分类方法对未来调查的含义,例如Vera C. Rubin天文台遗产时空(LSST)。
As part of the cosmology analysis using Type Ia Supernovae (SN Ia) in the Dark Energy Survey (DES), we present photometrically identified SN Ia samples using multi-band light-curves and host galaxy redshifts. For this analysis, we use the photometric classification framework SuperNNova (SNN; Möller et al. 2019) trained on realistic DES-like simulations. For reliable classification, we process the DES SN programme (DES-SN) data and introduce improvements to the classifier architecture, obtaining classification accuracies of more than 98 per cent on simulations. This is the first SN classification to make use of ensemble methods, resulting in more robust samples. Using photometry, host galaxy redshifts, and a classification probability requirement, we identify 1,863 SNe Ia from which we select 1,484 cosmology-grade SNe Ia spanning the redshift range of 0.07 < z < 1.14. We find good agreement between the light-curve properties of the photometrically-selected sample and simulations. Additionally, we create similar SN Ia samples using two types of Bayesian Neural Network classifiers that provide uncertainties on the classification probabilities. We test the feasibility of using these uncertainties as indicators for out-of-distribution candidates and model confidence. Finally, we discuss the implications of photometric samples and classification methods for future surveys such as Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST).