论文标题

固定效应模型的引导推断

Bootstrap inference for fixed-effect models

论文作者

Higgins, Ayden, Jochmans, Koen

论文摘要

具有固定效应的非线性面板数据模型的最大样品估计量是一致的,但在矩形阵列渐近造症下渐近偏置。迄今为止,文献将其努力集中在设计方法上,以纠正其偏见的最大样品估计量,以此作为挽救标准推论程序的一种手段。取而代之的是,我们表明,参数引导程序在大样本中复制了(未校正)最大似然估计器的分布。这证明了通过标准的引导百分比方法构建的置信集的使用是合理的。无需调整是否存在偏见。

The maximum-likelihood estimator of nonlinear panel data models with fixed effects is consistent but asymptotically-biased under rectangular-array asymptotics. The literature has thus far concentrated its effort on devising methods to correct the maximum-likelihood estimator for its bias as a means to salvage standard inferential procedures. Instead, we show that the parametric bootstrap replicates the distribution of the (uncorrected) maximum-likelihood estimator in large samples. This justifies the use of confidence sets constructed via standard bootstrap percentile methods. No adjustment for the presence of bias needs to be made.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源